• Title/Summary/Keyword: geoscience and mineral resources technology

Search Result 457, Processing Time 0.029 seconds

Seismic Imaging of Ocean-bottom Seismic Data for Finding a Carbon Capture and Storage Site: Two-dimensional Reverse-time Migration of Ocean-bottom Seismic Data Acquired in the Pohang Basin, South Korea (이산화탄소 지중저장 부지 선정을 위한 해저면 탄성파 탐사자료의 영상화: 포항 영일만 해저면 탐사자료의 2차원 역시간 구조보정)

  • Park, Sea-Eun;Li, Xiangyue;Kim, Byoung Yeop;Oh, Ju-Won;Min, Dong-Joo;Kim, Hyoung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.78-88
    • /
    • 2021
  • Owing to the abnormal weather conditions due to global warming, carbon capture and storage (CCS) technology has attracted global attention as a countermeasure to reduce CO2 emissions. In the Pohang CCS demonstration project in South Korea, 100 tons of CO2 were successfully injected into the subsurface CO2 storage in early 2017. However, after the 2017 Pohang earthquake, the Pohang CCS demonstration project was suspended due to an increase in social concerns about the safety of the CCS project. In this study, to reconfirm the structural suitability of the CO2 storage site in the Pohang Basin, we employed seismic imaging based on reverse-time migration (RTM) to analyze small-scale ocean-bottom seismic data, which have not been utilized in previous studies. Compared with seismic images using marine streamer data, the continuity of subsurface layers in the RTM image using the ocean-bottom seismic data is improved. Based on the obtained subsurface image, we discuss the structural suitability of the Pohang CO2 storage site.

A experimental Feasibility of Magnetic Resonance Based Monitoring Method for Underground Environment (지하 환경 감시를 위한 자기공명 기반 모니터링 방법의 타당성 연구)

  • Ryu, Dong-Woo;Lee, Ki-Song;Kim, Eun-Hee;Yum, Byung-Woo
    • Tunnel and Underground Space
    • /
    • v.28 no.6
    • /
    • pp.596-608
    • /
    • 2018
  • As urban infrastructure is aging, the possibility of accidents due to the failures or breakdowns of infrastructure increases. Especially, aging underground infrastructures like sewer pipes, waterworks, and subway have a potential to cause an urban ground sink. Urban ground sink is defined just as a local and erratic collapse occurred by underground cavity due to soil erosion or soil loss, which is separated from a sinkhole in soluble bedrock such as limestone. The conventional measurements such as differential settlement gauge, inclinometer or earth pressure gauge have a shortcoming just to provide point measurements with short coverage. Therefore, these methods are not adequate for monitoring of an erratic subsidence caused by underground cavity due to soil erosion or soil loss which occurring at unspecified time and location. Therefore, an alternative technology is required to detect a change of underground physical condition in real time. In this study, the feasibility of a novel magnetic resonance based monitoring method is investigated through laboratory tests, where the changes of path loss (S21) were measured under various testing conditions: media including air, water, and soil, resonant frequency, impedance, and distances between transmitter (TX) and receiver (RX). Theoretically, the transfer characteristic of magnetic field is known to be independent of the density of the medium. However, the results of the test showed the meaningful differences in the path loss (S21) under the different conditions of medium. And it is found that the reflection coefficient showed the more distinct differences over the testing conditions than the path loss. In particular, input reflection coefficient (S11) is more distinguishable than output reflection coefficient (S22).

A Case Study on Analysis of Landslide Potential and Triggering Time at Inje Area using a RTI Warning Model (RTI 경보모델을 이용한 강원도 인제지역의 산사태 가능성 및 발생시간 분석 사례 연구)

  • Chae, Byung-Gon;Liu, Ko-Fei;Cho, Yang-Chan
    • The Journal of Engineering Geology
    • /
    • v.18 no.2
    • /
    • pp.191-196
    • /
    • 2008
  • This study is a case study for application of the RTI warning model to Korea which was previously developed to predict landslide potential and occurrence time during a rainfall event. The rainfall triggering index (RTI) is defined as the product of the rainfall intensity I (mm/hr) and the effective accumulated rainfall $R_t$ (mm). This index is used to evaluate the landslide and debris-flow occurrence potential at time t during a rainfall event. The upper critical value ($RTI_{UC}$) of RTI and the lower critical value ($RTI_{LC}$) of RTI can be determined by historical rainfall data of a certain area. When the rainfall intensity exceeds the upper critical value, there are high potential to occur land-slides. The analysis result can predict landslide occurrence time of an area during a rainfall event as well as land-slide potential. The result can also be used as an important data to issue early-warning of landslides. In order to apply the RTI warning model to Korea this study analyzed rainfall data and landslides data in Inje county, Gangwon province, Korea from July 13 to July 19, 2006. According to the analysis result, the rainfall intensity exceeded the upper critical value 23 hours ago, 11 hours ago, and 9 hours ago from 11:00 in the morning, July 16. Therefore, landslide warnings would be issued three times for people evacuation for avoiding or reducing hurts and dam-ages from landslides in mountainous areas of Inje.

Basic Lunar Topography and Geology for Space Scientists (우주과학자에게 필요한 달의 지형과 지질)

  • Kim, Yong Ha;Choi, Sung Hi;Yu, Yongjae;Kim, Kyeong Ja
    • Journal of Space Technology and Applications
    • /
    • v.1 no.2
    • /
    • pp.217-240
    • /
    • 2021
  • Upon the human exploration era of the Moon, this paper introduces lunar topography and geologic fundamentals to space scientists. The origin of scientific terminology for the lunar topography was briefly summarized, and the extension of the current Korean terminology is suggested. Specifically, we suggest the most representative lunar topography that are useful to laymen as 1 ocean (Oceanus Procellarum), 10 maria (Mare Imbrium, Mare Serenitatis, Mare Tranuillitatis, Mare Nectaris, Mare Fecundatis, Mare Crisium, Mare Vaporium, Mare Cognitum, Mare Humorum, Mare Nubium), 6 great craters (Tyco, Copernicus, Kepler, Aristachus, Stebinus, Langrenus). We also suggest Korean terms for highland, maria, mountains, crater, rille, rima, graben, dome, lava tube, wrinkle ridge, trench, rupes, and regolith. In addition, we introduce the standard model for the lunar interior and typical rocks. According to the standard model on the basis of historical impact events, the lunar geological eras are classified as Pre-Nectarian, Nectarian, Imbrian, Erathostenesian, and Copernican in chronologic order. Finally, we summarize the latest discovery records on the water on the Moon, and introduce the concept of water extraction from the lunar soil, which is to be developed by the Korea Institute of Geoscience and Mineral Resources (KIGAM).

Variation of the Detection Efficiency of a HPGe Detector with the Density of the Sample in the Radioactivity Analysis (방사능 분석에서 밀도에 따른 HPGe 검출기의 검출효율 변화)

  • Seo, Bum-Kyoung;Lee, Kil-Yong;Yoon, Yoon-Yeol;Jung, Ki-Jung;Oh, Won-Zin;Lee, Kune-Woo
    • Analytical Science and Technology
    • /
    • v.18 no.1
    • /
    • pp.59-65
    • /
    • 2005
  • When the low level radioactivity sample is measured, it is required to have many samples. For increase of the sample volume, a scattering and absorbing probability of the emitted gamma-ray in the sample are to be increased. In order to correct the self-absorption effect, the counting efficiency must be calibrated according to a geometrical condition and sample density. But, it is impossible to determine efficiency for counting sample using standard source with the same geometrical condition and density. In this study, the measuring efficiencies were determined with various counting containers and densities. In order to compare the self-absorption effect with the sample density in the various sample container, the variation of the counting efficiency with the densities was investigated by adding NaI, which has high solubility and density. Also, they were compared with Monte Carlo simulation. The self-absorption effect was found to be significant in the low energy region below 0.5 MeV.

A Comparative Study on the $CO_2$ Storage Method ($CO_2$ 해양처리방안 비교연구)

  • Jung, R.T.;Kang, S.G.;Kang, C.G.;Park, Y.C.;Yoon, C.H.
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.8 no.3
    • /
    • pp.111-115
    • /
    • 2005
  • The concentration of atmosphere carbon dioxide ($CO_2$) which is one of the major greenhouse gas, continues to rise by the increase in fossil fuel consumption, forest destruction and decrease of biological diversity, etc. In order to weaken the global warming, a reduction of $CO_2$ discharge to the atmosphere is required. The $CO_2$ ocean sequestration technology utilizes the intrinsic oceanic capacity of $CO_2$ absorption, diluting and/or dispersing the liquefied $CO_2$ in the deep ocean (>2,000 m). This geo-engineering approach is regarded as one of the occasions to mitigate the $CO_2$ concentration in the atmosphere. Some developed centuries such as Japan, USA, Norway, etc. have intensively carried out the projects on the research and development of $CO_2$ ocean sequestration since 1990s. There have been several approaches to develop the relative technological system to mitigate the increasing $CO_2$, however, there was no systematic and practical R&D programme in the $CO_2$ ocean sequestration. This paper has described the state of the art on the three optional methods of $CO_2$ sequestration, and compared with them in the aspect of the applicable possibility.

  • PDF

A Review of Desulfurization Technology using Limestone in Circulating Fluidized Bed Boiler Type Power Plant (유동층보일러형 화력발전소의 석회석 활용 탈황기술 연구동향)

  • Baek, Chul-Seoung;Seo, Jun-Hoyung;Ahn, Ji-Whan;Han, Chon;Cho, Kae-Hong
    • Resources Recycling
    • /
    • v.24 no.5
    • /
    • pp.3-14
    • /
    • 2015
  • This study investigated that status of domestic and international furnace desulfurization and desulfurization characteristics of limestone for fluidized bed use depending on the technology for CFBC one of the CCPs. Limestone-based desulfurizing agent is one of the superior elements which are optimal at around $850-950^{\circ}C$ on high temperature desulfurization. And effectiveness of desulfurization process can be determined by the desulfurization experiment method such as diffusion reaction of the diaphragm of the absorber surface, the size of the particles, the pores of the quantity, size and structure. And, desulfurization efficiency depending on geological and crystallographic properties and calcination process of limestone needs additional research in the future.

Influence of Physicochemical Characteristic of Donghae-Samcheok Limestones on the Performance of Flue Gas Desulfurization (FGD) (동해-삼척지역 석회석의 물리화학적 특성이 탈황성능에 미치는 영향)

  • Seo, Jun-Hyung;Baek, Chul-Seoung;Kwon, Woo-Tech;Cho, Kye-Hong;Ahn, Ji-Whan
    • Resources Recycling
    • /
    • v.24 no.6
    • /
    • pp.38-44
    • /
    • 2015
  • It studies that effect of limestone of physicochemical characteristic on the performance of flue gas desulfurization (FGD) and application examination for technology of wet type FGD process and to utilize the limestone in Donghae-Samcheok. The experiment method was measured total neutralizing capability (TNC) using the lab scale experimental apparatus based on the HCl titration test. The results of TNC of limestone samples were more dependent on the physical characteristics including particle size rather than chemical compositions such as CaO content and particle size of limestone get smaller, TNC is increased.

Synthesis of Si-SiC-CuO-C Composite from Silicon Sludge as an Anode of Lithium Battery (실리콘 슬러지로부터 리튬전지(電池) 음극용(陰極用) Si-SiC-CuO-C 복합물의 합성(合成))

  • Jeong, Goo-Jin;Jang, Hee-Dong;Lee, Churl-Kyoung
    • Resources Recycling
    • /
    • v.19 no.4
    • /
    • pp.51-57
    • /
    • 2010
  • As a recycling of Si sludge from Si wafer process, a Si-SiC-CuO-C composite material was synthesized and investigated as an anode material for lithium batteries. The Si sludge consisted of Si, SiC, machine oil, and metallic impurities. The oil and metal impurities was removed by organic washing, magnetic separation, and acid washing. The Si-SiC-CuO-C composite from the recovered Si-SiC mixture was prepared by high-energy mechanical milling. According to the electrochemical tests such as charge-discharge capacity and cycling behavior, it showed the improved cycle performance. The SiC and CuO-related phases were presumed to restrain the volume expansion of the anode and Fe, however, should be removed below 10 ppm prior to synthesis of the composite because it caused the capacity loss of the active material itself.

Compressive Strength Properties of Geopolymers from Pond Ash and Possibility of Utilization as Synthetic Basalt

  • Kim, Byoungkwan;Lee, Bokyeong;Chon, Chul-Min;Lee, Sujeong
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.4
    • /
    • pp.365-373
    • /
    • 2019
  • Pond ash is a mixture of mostly coarser fly ash and bottom ash. The recycling rate of pond ash is low because pond ash is mixed with seawater and deposited in ponds. The pond ash is also subjected to natural weathering over a period of time. In this study, we investigated whether pond ash can be used as a raw material of geopolymers, without any purification process or through a minimal purification process. In addition, we investigated whether synthetic basalt made by adding foaming agent to geopolymer or casting it into a mold can show the surface of the natural basalt as it is. The highest 7-day compressive strength in geopolymers from pond ash without purification process was 26 MPa. The highest 7-day compressive strength in geopolymers from pond ash with impurities removed through dry sieve analysis was found to improve to 80 MPa. On the other hand, synthetic basalt made with geopolymer was shown to be more advantageous aesthetically when produced by casting it in a silicone mold rather than by adding a foaming agent. Non-purified pond ash can be made into geopolymers having low strength. Pond ash purified by sieving can, without use of an aggregate, be made into geopolymer having high-strength. Also, it is possible to produce synthetic basalt with the same appearance as natural basalt and sufficient strength for commercialization. This process will contribute to the mass consumption and recycling of pond ash.