고전압 아크 방전에 의한 플라즈마 발파의 유체 침투 효율을 검증하기 위해 실험실 규모의 토사 시료에 대하여 발파 시험을 실시하였다. 이 연구를 위해 대용량 축전기가 포함된 플라즈마 발파 장치와 직경 80 cm, 높이 60 cm 크기의 컬럼형 토사 시료를 제작하였다. 토사 시료로는 사질토와 실트를 7:3 비율로 섞은 A 시료 7개와 9:1 비율로 섞은 B 시료 3개가 제작되었다. A 시료에 플라즈마 발파 없이 수압만으로 유체를 주입했을 때는 시추공 주변으로 국소적인 침투만 발생되었고 침투면적비는 5% 이하로 분석되었다. 플라즈마 발파에 의한 유체 침투 시험은 1 kJ, 4 kJ 그리고 9 kJ의 방전 에너지로 실시되었다. A 시료에 대한 플라즈마 발파 시험에서 유체의 침투면적비는 1회만 발파하였을 때는 16~25%이고 5회 연속 발파 시에는 30~48%로 분석되어, 수압만으로 유체를 주입했을 때보다 침투면적이 최대 9.6배까지 넓어졌다. B 시료에 대한 5회 연속 플라즈마 발파 시험에서 유체의 침투면적비는 33~59%로 분석되어 동일 조건의 A 시료 시험에 비해 침투면적이 1.1~1.4배 정도 넓어졌다. 이러한 결과는 플라즈마 발파 시에 방전 에너지가 클수록, 발파 횟수가 증가할 수록 유체의 침투면적이 증가하며, 투수성이 큰 토양에서 플라즈마 발파가 더욱 효과적임을 보여준다. 유체 침투 효과를 삼차원적인 부피로 분석하기 위해 유체 침투반경을 계산하였다. 수압으로만 유체를 주입했을 때의 침투반경은 9 cm인 반면에, 9 kJ의 에너지로 5회 발파 시에는 침투반경이 27~30 cm로 계산되어 유체 침투 효과가 최대 333%까지 증가되었다. 이러한 연구결과는 투수성이 낮은 실제 오염토양에서 원위치 토양 세정을 실시할 때 플라즈마 발파 기술을 적용하면, 세정제의 전달범위가 증가되어 정화효율이 개선될 수 있다는 것을 보여준다.
올리고세의 시작과 함께 발생된 남극 대륙빙하의 형성, 해류 시스템 변화, 고생물 멸종 등 일련의 사건들은 현재까지 지질학자들로부터 매우 주요한 관심을 받아왔다. 하지만 이에 반해 에오세-올리고세 전이기(Eocene-Oligocene transition; EOT) 이후 올리고세 대부분의 기간 동안 발생된 고기후 고해양학적 변화에 대해서는 아직까지도 연구가 미흡한 상태이다. 특히, 후기 올리고세 온난화(late Oligocene warming; LOW)는 올리고세 동안 발생된 고기후 고해양학적 변화에 있어 가장 큰 규모의 사건 중 하나로 인식되고 있지만, 이 시기에 발생된 구체적인 변화 요소에 대한 이해는 매우 부족한 실정이다. 이번 연구는 IODP Expedition 342를 통해 북대서양 J-Anomaly Ridge에서 획득한 시추코어 퇴적물을 이용해 후기 올리고세 온난화 동안 어떤 고해양학적 변화가 발생되었는지 알아보기 위해 수행되었다. 연구지역은 북대서양 심층수(North Atlantic deep water; NADW)에 의해 직접적으로 영향을 받고 있기 때문에 과거 NADW의 변화를 연구하기에 적합한 곳으로 잘 알려져 있다. 고지자기 층서모델을 이용해 산출된 퇴적물의 연대는 약 26.0~26.5 Ma로 LOW의 초반부에 해당되는 시기이다. 이 퇴적물 시료로부터 산출되는 저서성 유공충의 한 종인 Oridorsalis umbonatus의 각질 크기 자료와 입도분석 결과는 서로 매우 유사한 변화경향성을 보여주는 것으로 나타났다. 이러한 연구 결과를 바탕으로 해당 시 추코어 퇴적물은 총 3개의 구간(Unit 1, 2, 3)으로 나누어지며, 그 중 Unit 2는 가장 큰 각질의 O. umbonatus가 산출되는 동시에 퇴적물 입자 크기도 가장 큰 것으로 나타났다. 또한 O.umbonatus의 개체수 역시 Unit 2에서 가장 높은 것으로 나타났다. O. umbonatus의 개체수, 각질 크기 변화, 입도 변화는 산소농도와 심층수 순환 강도의 프록시로 활용될 수 있기 때문에 이번 연구에서는 Unit 2가 퇴적된 시기 동안 NADW의 세기가 가장 강했던 것으로 해석하였다. 이와 같이 LOW 초기 동안 발생된 NADW의 강화는 기존 북대서양 저위도 지역의 Cibicidoides spp. 산소 및 탄소안정동위원소 자료를 통해서도 확인할 수 있다. 이번 연구의 결과는 LOW의 시작 원인이 NADW의 강화와 같은 고해양학적 변화와 연관되어 있다는 기존 연구결과를 지지하는 새로운 증거를 제시해준다.
노천 채광을 수행하는 광산은 지표 변화와 환경 교란을 발생시킬 수 있기 때문에 지속적인 모니터링이 필요하다. 노천 광산은 채광 작업장에 식생이 거의 분포하지 않아 InSAR 긴밀도 영상을 이용한 모니터링이 가능하다. 본 연구는 최근 개발된 InSAR 긴밀도 영상 기반의 Normalized Difference Activity Index(NDAI)를 적용하여 광산에서 발생하는 활동을 분석하였다. 3월5일청년광산은 2008년 이후 본격적으로 개발이 확장된 북한의 광산이다. 3월5일청년광산을 촬영한 12일 간격의 Sentinel-1 SAR 영상을 이용하여 획득된 InSAR 긴밀도 영상으로 NDAI 분석을 진행하였다. 우선 2000년부터 약 14년간 발생한 75.24 m의 고도 하강 지역과 약 9.85 m의 고도 상승 지역을 채광 작업장 및 광미 적치장으로 정의하였다. 이후 NDAI 영상을 이용하여 기간별 활동 분석을 진행하기 위해 전체 기간의 평균 영상, 1년 단위의 평균 영상, 및 4개월 단위의 평균 영상을 제작하였다. 2017년부터 2019년까지 광산 활동은 평균적으로 채광 작업장의 중심에서 비교적 활발하였다. 보다 자세한 광산의 활동 변화를 확인하기 위해 시간 간격을 좁혀 1년간의 활동을 알아보고자 하였다. 2017년은 지진파 자료의 정보와 NDAI 영상을 이용하여 인공 지진의 발생 시점과 그 전후에 대하여 RGB 합성 영상을 제작하고 채광 작업장의 활동 변화를 분석하였다. 2017년 4월 30일 발생한 대규모 발파 이후 채광 작업장의 서쪽에서 활발한 활동이 감지되었다. 9월 30일의 두 차례의 발파 이후에는 채광 작업장의 크기가 확장된 것으로 추정된다. 2018년 및 2019년의 활동 변화는 4개월 단위의 시간 평균 영상을 RGB 영상으로 합성하여 분석하였다. 연도별 활동을 분석한 결과, 2018년은 채광 작업장의 북동쪽에서 활발하게 활동하는 영역을 찾을 수 있었으며, 2019년은 광미 적치장에서 확장에 따른 특징적인 활동이 확인되었다. NDAI를 이용한 시계열 분석으로 광학 영상으로는 확인하기 어려운 노천 광산의 무작위적인 지표 변화를 탐지할 수 있었다. 특히 현장 자료를 획득할 수 없는 지역의 광산 활동을 원격 탐사를 이용하여 효과적으로 수행할 수 있었다.
오일샌드 채굴에 널리 이용되고 있는 증기 주입식 중력 배수(Steam-Assisted Gravity Drainage, SAGD) 공법은 지표의 변형을 야기하며, 이는 오일샌드 플랜트의 안정성에 영향을 미칠 뿐만 아니라 다양한 지질 재해의 원인이 되므로 지속적인 모니터링이 필요하다. 이 연구에서는 캐나다 앨버타의 Athabasca 오일샌드 지역에 대해 2016년부터 2021년까지 획득된 Sentinel-1 시계열 영상레이더(synthetic aperture radar, SAR) 자료에 고정산란체 간섭기법(Permanent Scatterer Interferometric SAR, PSInSAR)을 적용하여 SAGD 운용에 의한 지표변위를 관측하였다. 그리고 SAGD의 건설 및 확장을 Landsat-7/8 시계열 영상으로부터 파악하고, 이를 통해 SAGD의 원유 생산성에 따른 지표변위의 특성을 분석하였다. Athabasca 오일샌드 지역의 SAGD 및 그 주변에서는 레이더 관측방향으로 0.3-2.5 cm/yr의 지반융기가 관측된 반면, SAGD에서 수 km 이상 떨어져 있고 오일샌드 채굴의 영향이 없는 지역에서는 -0.3--0.6 cm/yr의 침하가 관측되었다. Landsat-7/8 시계열 영상 분석을 통해 2012년 이후에 건설되어 높은 생산성을 보이는 SAGD는 증기의 주입으로 인해 1.6 cm/yr 이상의 지반융기를 야기하는 반면에 더 오랜 기간 동안 운용되어 생산성이 상대적으로 낮은 SAGD에서는 증기 주입에도 불구하고 지속적인 원유 회수에 따른 사암의 압축 때문에 연간 수 mm의 매우 작은 융기가 발생함을 추정할 수 있었다. SAGD 및 그 주변을 제외한 대부분의 지역에서 관측된 침하는 동토층의 융해에 의한 점진적 지반침하로 추정되었다. 동토층의 침하를 고려할 때 SAGD 운용에 기인하는 지반의 융기는 관측된 것보다 더 클 것이라고 예상되었다. 이 연구의 결과를 통해 PSInSAR 기법이 극한지 오일샌드 SAGD의 생산성과 안정성 평가에 유용한 수단으로 활용될 수 있음을 확인할 수 있었다.
지구 자기장의 고영년변화(PSV)를 이용하면 시대 미상의 고고학적 유적에 대한 연대측정이 가능하며, 이를 고고지자기 연대측정 기법이라 한다. 고고지자기 연대측정을 위해서는 비쌍극자기장을 반영하는 그 지역의 PSV 모델이 필요하다. 그동안 국내에서는 자료의 부족으로 시험적 한반도 영년변화 곡선(t-KPSV)을 사용하였으나, 이는 서남 일본의 영년변화(JPSV)로부터 수학적인 계산을 사용한 곡선이므로, 비쌍극자기장의 영향을 고려하지 못하여 신뢰성이 부족하다. 이번 연구는 그동안 한반도에서 수행된 고고지자기학적 연구 결과와 이미 발표되어 신뢰할 수 있는 연구 자료를 바탕으로 한반도 삼국 시대(원삼국 시대 포함)에 해당하는 AD 1~600년 동안의 PSV를 분석하여 곡선을 제시하였다. 제시된 PSV 곡선은 전 지구적 지자기 예측 모델과 비교 분석하였으며, 시험적 한반도 고영년변화(t-KPSV) 곡선과도 비교하였다. 선별된 고고지자기 방향 자료는 시료 수(N) ≥ 6개와 높은 신뢰도를 보이는 통계자료(𝛼95 ≤ 7.8°, k ≥ 57.8)를 보였으며, 전국의 16개 지역에서 총 49개의 자료로 구성된다. 수집한 자료의 고고학적 연대는 방사성 탄소연대측정 결과와 고고학적 편년을 사용하였고, 연대 오차는 ±200년 이하의 기준으로 선별하였다. 선별된 자료들은 편각 341.7~20.1°, 복각 43.5~60.3°의 범위에 분포하며, 이동창문기법(moving window method)을 사용하여 과거 600년간 한반도 PSV 곡선인 KPSV0.6k를 제시하였다. 제시된 모델은 기존의 t-KPSV 곡선과 차이를 보이며, 전 지구적 지자기 모델(ARCH3K.1, CALS3K.4, SED3K.1)에 대비한 결과, 모델들과 방향의 변화 경향이 일치하였으며, 특히 ARCH3K.1 모델이 본 연구에서 제시한 KPSV0.6k와 가장 잘 일치하였다. 이러한 결과는 한국과 일본이 지리적으로는 근접해 있으나 비쌍극자기장 영향이 매우 다르게 나타나며, 따라서 이러한 영향이 고려된 전 지구적 모델이 한반도의 영년변화를 보다 잘 나타낼 수 있는 것으로 해석된다. 따라서 고고지자기 연대측정을 위해서 독자적 영년변화 곡선 구축이 필요하며, 보다 정교한 전 지구적 모델을 위해 보다 많은 신뢰성 높은 한반도의 고고지자기 자료 확보가 필요한 것으로 판단된다. 실제 고고학적 유적지를 대상으로 실시한 고고지자기 연대측정 결과, KPSV0.6k와 ARCH3K.1 모델에선 고고학적 편년과 일치하는 연대를 제시하였다.
북극해 아메라시아 분지(Amerasia Basin)에 속한 척치 해저평원(Chukchi Abyssal Plain)의 지구조 역사(tectonic history)는 혹독한 해빙 조건으로 인한 관측 부족으로 인하여 아직 밝혀지지 않았다. 지구조역사에 대한 여러 경쟁 가설들은 형성 시기로는 중생대에서 신생대까지, 지각 유형으로는 과도하게 확장된 대륙 지각에서 해양 지각까지, 형성 기작으로는 평행/부채꼴 균열에서 평행이동까지의 광범위한 범위를 갖는다. 2018년(ARA09C 항차)과 2021년(ARA12C 항차)에 쇄빙연구선 아라온을 이용해 해저평원의 수심 2,160~2,250 m 범위의 3개 정점에서 해양지각의 연령 결정에 필수적인 역할을 하는 해양지열의 관측이 이루어졌다. 해양지열 정점은 약 40 km에 걸쳐 확장축에 수직으로 위치한다. 퇴적물 코어 시료의 실험실 열전도도로부터 보정된 현장 열전도도를 사용하면, 관찰된 해양지열은 54~60 mW/m2 범위를 보인다. 해양지각을 가정할 때, 해양지열 관측결과는 형성 시기로서 후기 백악기(중생대)에 해당한다. 추정된 연대는 후기 중생대-신생대 동안 마카로프 분지가 열리면서 척치 해저평원 형성이 활성화되었다는 가설을 뒷받침한다. 이 시기는 동쪽으로 해저평원에 인접한 척치 보더랜드(Chukchi Border Land)의 열개 현상 발생과 동시대이다. 본 연구의 해양지열 관측결과로 퇴적물 내 가스하이드레이트 안정영역 하부(the base of the gas hydrate stability zone)의 위치가 추정되었고(332~367 mbsf), 이는 척치 고원(Chukchi Plateau)에서처럼 가스하이드레이트와 연관된 해저면 모사 반사면을 식별하는 데 도움이 될 것이다. 척치 해저평원의 정확한 형성 과정과 맨틀 열구조에 대한 이해를 높이기 위해 해양지열 관측을 포함한 추가적인 지구물리 탐사가 필요하다.
지구온난화로 인해 극지방에 대한 접근성이 높아짐에 따라 석유자원이 풍부한 영구동토 지역에서 자원개발 플랜트 건설의 수요가 증가하고 있다. 동토 지역에서의 자원개발 플랜트 건설 입지는 동토 활성층의 융해와 동결에 기인하는 지표변위가 필수적으로 고려되어야 한다. 그러나 동토의 변위를 고려하여 자원개발 플랜트 건설의 입지를 선정한 연구 사례는 거의 없다. 이 연구에서는 캐나다 앨버타 주의 Athabasca 남부 지역에서 최적의 오일샌드 개발 플랜트 건설 입지를 선정하기 위해 지표변위를 비롯한 다양한 공간정보를 활용하여 계층화 분석(Analytical Hierarchy Process)을 수행하였고, 동토 지역에서의 자원개발 플랜트 건설 활동에 있어 지표변위의 중요성을 논의하였다. 2007년 2월부터 2011년 3월까지 획득된 시계열 ALOS PALSAR 영상에 Small BAseline Subset-Interferometric Synthetic Aperture Radar 기법을 적용하여 지표변위 속도 정보를 구축하였고, ERA5 재분석 자료로부터 2000~2010년 기간에 대한 평균 기온, 지표온도, 지중온도 정보를 구축하였다. 도로 및 철도와 토지피복 공간정보는 각각 캐나다 연방 통계청과 북미환경협력위원회에서 제공하는 자료를 구축하여 활용하였다. 토지피복, 지표변위, 도로 접근성을 가장 중요한 공간정보로 설정하여 수행한 최적 입지 분석 결과는 2010년 이후 건설된 오일샌드 플랜트 건설지와 비교하여 그 타당성이 확인되었고, 입지 적합도 평가에 대한 지표변위의 민감도는 매우 높은 것으로 분석되었다. 이 연구를 통하여 동토 지역에서 최적의 자원개발 플랜트 건설지를 선정하는데 지표변위가 필수적으로 고려되어야 함이 확인되었다.
강원도 지역과 그 주변에 설치된 21개의 광대역 지진관측소 하부에 대한 지각속도구조를 분석하기 위해 2019년 3월 18일부터 2022년 12월 31일 사이에 발생한 139개 원거리 지진자료(Mw ≥ 5.8, 진앙거리 30° - 90°)에 H-κ 중합법을 적용하여 각 관측소 하부에서의 모호면 깊이와 Vp/Vs 비를 추정하였다. H-κ 중합법으로 추정한 모호면 깊이는 24.9 - 33.2 km, Vp/Vs 비는 1.695 - 1.760으로 나타났으며, 추정한 Vp/Vs 비를 수신함수와 표면파 분산의 연합 역산에 적용하여 각 관측소 하부에 대한 1차원 지각속도 모델을 획득하였다. 이에 따른 모호면 깊이는 25.9 - 33.7 km로 H-κ 중합법과 유사한 결과를 보여주었고, 두 방법의 모호면 깊이 결과는 에어리의 지각평형설을 대체적으로 따르는 일치된 양상을 보인다. 1차원 지각속도 모델 해석 결과 태백산 분지에 위치한 일부 관측소의 직하부에서 P파 속도 5 km/s 이하의 저속도층이 2 km 두께로 존재함을 확인하였으며, 강원도 북부에 위치한 CHNB, GAPB 관측소도 같은 결과를 보이는데 이 관측소들은 신생대에 생성된 퇴적층 위에 위치하고 있다. SH2B 관측소는 퇴적층 위에 위치하지 않음에도 불구하고 표층의 P파 속도가 낮게 나왔으며, 이는 기반암의 풍화와 같은 여러 요인으로 인한 것으로 보인다. 계산된 1차원 모델들을 살펴볼 때 모든 관측소의 4 - 12 km 깊이 사이에서 깊어짐에 따라 속도가 감소되는 속도역전층이 관측되었고, 이중 일부 관측소의 하부 10 km 부근에서 암석의 밀도차로 인한 것으로 여겨지는 중간지각 불연속면이 나타났다.
서태평양 멜라네시아 지역에는 복잡한 판들의 지구조 운동이 발생하고 있고, 가장 거대한 해양 해대인 온통-자바 해대와 열점인 캐롤라인 제도가 위치해 있다. 이 지역의 복잡한 지구동역학에 대한 이해를 높이기 위해 해저 지진계와 육상 지진계에 기록된 원거리 지진으로부터 상대 주시를 획득하여 P파 및 S파 속도 모델 및 𝛿 (VP/VS) 모델을 계산했다. 그 결과 멜라네시아 지역의 섭입대에서 약 400km 깊이까지 강한 고속도 이상이 관찰됐고, 이는 판경계를 따라 섭입하는 솔로몬해판, 비스마르크판, 그리고 호주판의 모습으로 생각된다. 섭입대를 따라 양의 𝛿 (VP/VS) 이상값이 나타나는데, 이는 탈수 작용에 의한 부분 용융의 결과로 생각된다. 온통-자바 해대 하부 600km 깊이 아래에서 넓은 고속도 이상체가 관찰되며, 음의 𝛿 (VP/VS) 이상값을 보인다. 이는 25-45 Ma 시기에 섭입한 태평양판이 분리된 잔재로 판단되며, 오랜 기간 맨틀 전이대에 머물면서 잔류판의 최상부에 포함되어 있던 유체가 빠져나가면서 주변 맨틀 물질에 비해 상대적으로 점성이 높고 건조해짐으로 인해 강한 고속도 이상과 강한 음의 𝛿 (VP/VS) 이상값이 나타난 것으로 생각된다. 캐롤라인 제도 하부에서는 강한 저속도 이상이 800km 깊이까지 관찰되며 맨틀 전이대에 위치한 태평양판 잔재 하부까지 연결되어 보인다. 이는 하부 맨틀에서 기인한 맨틀 플룸이 태평양판의 잔재와의 상호작용으로 인해 상승방향이 바뀌어 현재 위치에 도달한 것으로 보인다. 또한 맨틀플룸은 양의 𝛿 (VP/VS) 이상값을 가지는데 내포된 유체나 부분 용융에 의한 영향으로 생각된다. 온통-자바 해대 하부의 두꺼운 암석권의 영향으로 해석되는 고속도 이상체가 300km 깊이까지 관찰되었으며 음의 𝛿 (VP/VS) 이상값을 보여주는데, 이는 암석권에 쌓인 용융 잔류물에 유체가 거의 남아있지 않음을 나타내는 것으로 보인다.
한반도는 동아시아 활성 경계부의 끝에 위치해있다. 한반도에서의 지진 활동은 이웃나라인 중국과 일본에 비해서 상대적으로 낮은 편이다. 한반도에서의 지진정보에 따르면 한반도는 지진재해로부터 완전히 안전하지는 않다. 게다가, 한반도 주위의 "태평양, 필리핀해, 유라시아, 남중국"같은 구조적 판들의 상대적인 움직임의 결과로 생긴 다양한 구조적 힘에 의해 둘러 싸여져 있다. 현재 남한에는 5개의 정부기관에서 서로의 필요에 따라 설치한 65개의 GPS관측소를 가지고 있다. 한반도에서의 지진피해를 최소화하기 위해 현재, 앞서 언급한 지진관측소 중 몇 개의 관측소로부터의 GPS관측 자료와 한반도 내부와 주변부의 구조적 환경들을 함께 고려하여 근대의 지각운동을 관찰하는 프로그램이 계획되어 왔다. 이 프로그램은 두개의 주요 부분으로 이루어져 있으며, 첫째부분은 주변 국가인 "중국, 일본"과 협력하여 한반도 주위의 지각 변형을 모니터링하기 위한 것인데, 이 부분은 "East Sea Phase and Yellow Sea Phase" 두개의 페이스로 구성되어 있다 이러한 페이스들은 "East Sea Phase and Yellow Sea Phase"에서 각각의 변형 파라미터들을 결정하는데 도움을 줄 것이다. 한편, 이 프로그램의 두번째 부분은 한반도 주요 단층 내부와 주변의 변형 파라미터와 한반도-제주도 간의 상대운동을 결정하기 위해 계획되었다. 이번 연구를 통해서 다양한 지구 역학적 방법의 적용을 위한 신빙성 있는 자료로서 사용되기 위해, 앞서 언급한 관측소에서의 지각운동 중심부에서 기록된 자료의 필요성이 부각되었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.