• Title/Summary/Keyword: geophysical survey techniques

Search Result 60, Processing Time 0.027 seconds

Geophysical exploration techniques, used in geotechnical and engineering markets in Korea, Japan, and U.S.A. (지반환경조사에 주로 사용되는 지구물리탐사기법 -한국, 일본, 미국-)

  • Won, Kyung-Sik
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.3
    • /
    • pp.247-268
    • /
    • 2002
  • The various geophysical exploration techniques, which are currently employed in Korea, are investigated in terms of the survey specifications used in the geotechnical and engineeringl markets in Korea, Japan, and USA.

  • PDF

The Application of Digital Watermarking in Remote Sensing Image

  • Jin, Peidong;Qin, Xuwen
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.1264-1267
    • /
    • 2003
  • To protect the digital image, video and audio from non-authorized use, the digital watermarking technology has received a great attention in the field of multimedia in recent years . An overview of the development of watermark techniques is given in the current paper followed by a discussion of potential application of spatial domain, transform domain watermark techniques in remote sensing images copyright protection and verification in different forms of processed images.

  • PDF

Archaeological Investigations in Urban Areas through Combined Application of Surface ERT and GPR Techniques

  • Papadopoulos, Nikos;Yi, Myeong-Jong;Sarris, Apostolos;Kim, Jung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.113-118
    • /
    • 2008
  • Among the geophysical methods, Ground Penetrating Radar (GPR) and Electrical Resistivity Tomography (ERT) comprise the most promising techniques in resolving buried archaeological structures in urban territories. In this work, two case studies which involve an integrated geophysical survey employing the surface three dimensional (3D) ERT and GPR techniques, in order to archaeologically characterize the investigated areas, are presented. Totally more than 4000 square meters were investigated from the test field sites, which are located at the centre of two of the most populated cities of the island of Crete, in Greece. The ERT and the GPR data were collected along dense and parallel profiles. The subsurface resistivity structure was reconstructed by processing the apparent resistivity data with a 3D inversion algorithm. The GPR sections were processed with a systematic way applying specific filters to the data in order to enhance their information context. Finally, horizontal depth slices representing the 3D variation of the physical properties were created and the geophysical anomalies were interpreted in terms of possible archaeological structures. The subsequent excavations in one of the sites verified the geophysical results, enhancing the applicability of ERT and GPR techniques in the archaeological exploration of urban territories.

  • PDF

A proposal of marine geophysical exploration techniques for offshore plant installation (해양플랜트 설치를 위한 해양물리탐사 기법 제안)

  • Ha, Ji-Ho;Ko, Hwi-Kyung;Cho, Hyen-Suk;Chung, Woo-Keen;Ahn, Dang;Shin, Sung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.37 no.2
    • /
    • pp.242-251
    • /
    • 2013
  • Recently, while global concern over offshore resources exploration and development is being increased rapidly, offshore plant industry is highlighted as an industry of high added value. Along with this global trend, domestic concern over offshore plant development is being increased as well. In the overseas case, a marine geotechnical survey guideline for confirming characteristics of seabed sediments is available at the time of installation of offshore plant but such guideline is not available in our country. In this study, survey techniques fit for domestic marine environment was applied according to overseas guideline at southern coastal area, Korea. Among the marine geophysical survey techniques being proposed abroad, magnetic survey and seabed photograph were excluded. However, highly reliable data analysis was enabled for marine geophysical survey, which includes in-situ coring investigation and laboratory soil test. In addition, continuous ocean current survey was included to find scour potential due to the current around the offshore plant. Although coring depth is not so deep, we predicted geological structure through the analysis of amplitude features of seismic data. Characteristics of seabed sediments cold be obtained regionally and directly through combined analysis of marine geophysical survey data and coring data.

Time-lapse Geophysical Survey Analysis for Field-scale Test bed of Excavation Construction (실규모 굴착 시험장에서의 시간경과 물리탐사 자료 분석)

  • Shin, Dong Keun;Song, Seo Young;Kim, Bitnarae;Yoo, Huieun;Ki, Jung Seck;Nam, Myung Jin
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.137-151
    • /
    • 2019
  • Geophysical exploration techniques are effective for monitoring changes in the ground condition around the excavation project to prevent subsidence risks during excavation work, therefore, improving analysis techniques is required for applying and supplementing various geophysical exploration technologies. In this study, a field-scale on-site test was conducted to detect possible ground subsidence hazards and areas of relaxation zone that may occur during excavation work and due to underground water level changes. In order to carry out the field test, a real-scale excavation test bed was constructed and the geophysical exploration methods, such as electrical resistivity survey and multi-channel analysis of surface wave (MASW) survey for urban sites condition, have researched for optimal geophysical exploration parameter, design and correlation analysis between the results by reviewing the validity of each individual geophysical exploration and modeling. The results of this study showed the impact of each geophysical exploration on the relaxation zone and, in particular, the location of the underground water surface and the effects of excavation were identified using electrical resistivity survey. Further research on modeling will be required, taking into account the effects of excavation and groundwater.

Detecting buried human remains using near-surface geophysical instruments

  • Powell Kathryn
    • Geophysics and Geophysical Exploration
    • /
    • v.7 no.1
    • /
    • pp.88-92
    • /
    • 2004
  • To improve the recovery rate of unlocated buried human remains in forensic investigations, there is scope to evaluate and develop techniques that are applicable to the Australian environment. I established controlled gravesites (comprising shallow buried kangaroos, pigs, and human cadavers) in South Australia, to allow the methodical testing of remote sensing equipment for the purpose of grave detection in forensic investigations. Eight-month-old pig graves are shown to provide more distinct identifying results using ground-penetrating radar when compared to four-year-old kangaroo graves. Two further aspects of this research are presented: information (obtained from a survey) relating to the police use of geophysical instruments for locating buried human remains, and the use of electrical resistivity for locating human remains buried in a coffin. The survey of Australian police jurisdictions, covering the period 1995-2000, showed that police searches for unlocated bodies have not successfully located human remains using any geophysical instruments (such as ground-penetrating radar, magnetometers, or electrical resistivity). Lower resistivity readings were found coincident with the 150-year-old single historical burial in a heavily excavated field, in a situation where its exact location was previously unknown.

Agricultural Geophysics in South Korea: Case Histories and Future Advancements (우리나라 농업 물리탐사: 적용 사례와 향후 과제)

  • Song, Sung-Ho;Cho, In-Ky
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.4
    • /
    • pp.244-254
    • /
    • 2018
  • The first geophysical technique applied to the agricultural sector in Korea was electrical resistivity sounding and conducted in purpose of groundwater exploitation in the 1970s. According to the diversity of agricultural activities since the 1990s, various geophysical methods including electrical resistivity, electromagnetic induction, and self-potential method were applied to several agricultural fields such as soil characterization with saline concentration in vast reclaimed area, delineation of seawater intrusion regions in costal aquifer, safety inspection of embankment dikes with leakage problem, detection of ground subsidence from overpumping and tracing of groundwater aquifer contamination by leachate from livestock mortality burial or waste burial site. This paper introduces representative geophysical techniques that have been utilized in various agricultural fields and suggests several ways to develop the geophysical methods required for the precision agriculture field in the near future based on the past achievements.

Application of electromagnetic survey to geotechnical problems (지반조사를 위한 전자탐사의 적용)

  • Cho In-Ky;Song Yoonho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.37-47
    • /
    • 1999
  • Among the geophysical exploration methods, electromagnetic (EM) survey must have the broadest range of instrumental systems and remarkable range of applications. There is a plethora of available techniques and instruments, and the depth of investigation and resolution are highly dependent on the particular systems used according to their operating frequency and source-receiver configuration. This diversity of EM systems, however, provides a wide range of instruments or methodologies to choose in order to select the most appropriate tool for the task in hand. This rather than being a disadvantage, would be a major strength of EM methods. Modern EM equipments are remarkably portable, considering their sophistication. Coupled with major advances in recent computer technology, accurate modeling and interpretation techniques are on the way of continuous development and upgrade which, in turn, make the EM methods to become much more heavily used, especially for engineering and environmental applications. We aim to provide a brief theoretical principles, survey techniques and case histories of some selected EM methods that can be applied to geotechnical and environmental problems in Korea.

  • PDF

The geophysical survey and rock classification suitable for the design of a tunnel in urban area passing underneath the Gyeongbu Line(Railload) (경부선 직하부를 나란히 통과하는 도심지 터널에 있어서 지표물리탐사 및 암반등급 평가 사례 연구)

  • Lee Kun;Kim Eun-Duk;Sha Sang-Ho;Cha Young-Ho;Kim Tae-Young;Jung Doo-Suk;Hwang Nak-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.673-679
    • /
    • 2005
  • Urban conditions such as underground facilities and ambient noises due to cultural activity restrict the application of conventional geophysical techniques in general. We used the linear array microtremor technique which uses these noises as strong energy source. The result parameter of the survey is shear wave velocity profile which had been applied as an fundamental information for the determination of the rock support type in tunnel design. This study was the first case in Korea which utilized a surface geophysical technique yielding successful result in urban area especially under the existing rail ways. The quantitative relation between the shear wave velocity from this method and the rock mass rating(RMR) determined from the inspection of the cores recovered from the same boreholes showed high statistical relationship. These correlations were then used to relate the shear-wave velocity to RMR along the entire profile.

  • PDF

Application of Electromagnetic and Electrical Survey for Soil Contamination in Land-Fill Area (쓰레기 매립장의 토양오염 조사를 위한 전자탐사 및 전기탐사)

  • Chang Hyun-Sam;Lim Hae-Ryong;Hong Jae-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.2
    • /
    • pp.87-91
    • /
    • 1998
  • Geophysical survey techniques, such as electromagnetic(EM), GPR, and electrical method, have been tested in the landfill area to evaluate the applicability of these methods to soil contamination measurement. The EM method has proven to be excellent on mapping the areal distribution of contaminants and the migration path for leachate. Since the field operation of EM technique is simple as well as fast, we think the EM method must be the first choice for these purposes. Electrical survey techniques have proven to be very effective on mapping sectional distribution of contaminants. Generally, the GPR method is very good on high resolution survey of shallow depth, and field data acquisition is simple, too. But the resistivity method gives better information on deep area, for example, deeper than the depth of 20 m.

  • PDF