• Title/Summary/Keyword: geophysical parameters

Search Result 159, Processing Time 0.025 seconds

Geophysical and mechanical investigation of different environmental effects on a red-bed soft rock dam foundation

  • Liming Zhou;Yujie Li;Fagang Wang;Yang Liu
    • Geomechanics and Engineering
    • /
    • v.34 no.2
    • /
    • pp.139-154
    • /
    • 2023
  • Red-bed soft rock is a common stratum and it is necessary to evaluate the mechanical properties and bearing capacity of red-bed soft rock mass affected by different environmental effects. This paper presents a complete procedure for evaluating the bearing capacity of red-bed soft rock by means of geophysical exploration and in-situ rock mechanics tests. Firstly, the thickness of surface loosened rock mass of red-bed soft rock was determined using geophysical prospecting method. Then, three environmental effects, including natural weathering effect, dry-wet cycling effect and concrete sealing effect, were considered. After each effect lasted for three months, in-situ rock mass mechanical tests were conducted. The test results show that the mechanical properties of rock mass considering the sealing effect of concrete were maintained. After considering the natural weathering effect, the mechanical parameters decrease to a certain extent. After considering the effect of dry-wet cycling, the decreases of mechanical parameters are the most significant. The test results confirm that the red-bed soft rock dam foundation rock mass will be significantly affected by various environmental effects. Therefore, combined with the mechanical test results, some useful implementations are proposed for the construction of a red-bed soft rock dam foundation.

Upwelling Proxy Improvement and Validation Using Satellite Remote Sensing along Southwest of the East Sea: Case Study in 2019

  • Kim, Deoksu;Bae, Dukwon;Choi, Jang-Geun;Jo, Young-Heon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.4
    • /
    • pp.387-394
    • /
    • 2022
  • Coastal upwelling is a significantly imperative process for understanding the interactions between physical and ecological processes and has been investigated incessantly. In this study, we explored the upwelling index, specifically upwelling age (UA). UA enabled us to observe the initiating, sustaining, and decaying upwelling processes. Although the sensitivity of many other geophysical parameters to estimate UA has been investigated, the wind direction has not been evaluated. Thus, we assessed the appropriate wind direction for the UA and obtained efficient upwelling signals from the four coastal stations. Furthermore, we applied the UA and compared it with the satellite sea level anomaly, sea surface temperature, and chlorophyll-a changes to validate how UA depicts their spatial extents. Thus, UA can predict the timing of coastal upwelling events using predicted geophysical parameters.

Integration of Geophysical Properties and Geospatial Information for Telecommunication Modeling

  • Kim, Jeong-Woo;Lee, Dong-Cheon;Pack, Jeong-Ki;Yom, Jae-Hong;Kwon, Jay-Hyon;Jeong, Nam-Ho
    • Proceedings of the KSRS Conference
    • /
    • 2002.10a
    • /
    • pp.745-745
    • /
    • 2002
  • Both geophysical and geospatial data provide important information in the establishment of the optimal telecommunication systems especially in the mobile telecommunication environment. The objective of this study is to utilize geophysical properties and geospatial information in the analysis of the telecommunication environment through point-to-point wave property modeling. Geophysical properties associated with wave propagation parameters of the earth surface were analyzed based on hierarchical land classification using Landsat ETM+ and IKONOS images. Three-dimensional geospatial information was obtained by processing stereo aerial images. The results show that the accurate geospatial information and reliable geosphysical property of the surface improve the prediction of receiving power of the receivers located near corners of the buildings where diffractions occur. The wave property model developed from accurate telecommunication environment could be applied to optimal cell planning and delay time analysis.

  • PDF

Investigation of Indicator Kriging for Evaluating Proper Rock Mass Classification based on Electrical Resistivity and RMR Correlation Analysis (RMR과 전기비저항의 상관성 해석에 기초하여 지시크리깅을 적용한 최적 암반 분류 기법 고찰)

  • Lee, Kyung-Ju;Ha, Hee-Sang;Ko, Kwang-Buem;Kim, Ji-Soo
    • Tunnel and Underground Space
    • /
    • v.19 no.5
    • /
    • pp.407-420
    • /
    • 2009
  • In this study geostatistical technique using indicator kriging was performed to evaluate the optimal rock mass classification by integrating the various geophysical information such as borehole data and geophysical data. To get the optimal kriging result, it is necessary to devise the suitable technique to integrate the hard (borehole) and soft (geophysical) data effectively. Also, the model parameters of the variogram must be determined as a priori procedure. Iterative non-linear inversion method was implemented to determine the model parameters of theoretical variogram. To verify the algorithm, behaviour of object function and precision of convergence were investigated, revealing that gradient of the range is extremely small. This algorithm for the field data was applied to a mountainous area planned for a large-scale tunneling construction. As for a soft data, resistivity information from AMT survey is incorporated with RMR information from borehole data, a sort of hard data. Finally, RMR profiles were constructed and attempted to be interpreted at the tunnel elevation and the upper 1D level.

Assessment of the Near Real-Time Validation for the AQUA Satellite Level-2 Observation Products

  • Yang Min-Sil;Lee Jeongsoon;Lee Chol;Park Jong-Seo;Kim Hee-Ah
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.35-38
    • /
    • 2004
  • We developed a Near Real-Time Validation System (NRVS) for the Level-2 Products of AQUA Satellite. AQUA satellite is the second largest project of Earth Observing System (EOS) mission of NASA. This satellite provides the information of water cycle of the entire earth with many different forms. Among its products, we have used five kinds of level-2 geophysical parameters containing rain rate, sea surface wind speed, skin surface temperature, atmospheric temperature profile, and atmospheric humidity profile. To use these products in a scientific purpose, reasonable quantification is indispensable. In this paper we explain the near real-time validation system process and its detail algorithm. Its simulation results are also analyzed in a quantitative way. As reference data set in-situ measured meteorological data which are periodically gathered and provided by the Korea Meteorological Administration (KMA) is processed. Not only site-specific analysis but also time-series analysis of the validation results are explained and detail algorithms are described.

  • PDF

Full Waveform Inversion Using Automatic Differentiation (자동 미분을 이용한 전파형 역산)

  • Wansoo, Ha
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.4
    • /
    • pp.242-251
    • /
    • 2022
  • Automatic differentiation automatically calculates the derivatives of a function using the chain rule once the forward operation of a function is defined. Given the recent development of computing libraries that support automatic differentiation, many researchers have adopted automatic differentiation techniques to solve geophysical inverse problems. We analyzed the advantages, disadvantages, and performances of automatic differentiation techniques using the gradient calculations of seismic full waveform inversion objective functions. The gradients of objective functions can be expressed as multiplications of the derivatives of the model parameters, wavefields, and objective functions using the chain rule. Using numerical examples, we demonstrated the speed of analytic differentiation and the convenience of complex gradient calculations for automatic differentiation. We calculated derivatives of model parameters and objective functions using automatic differentiation and derivatives of wavefields using analytic differentiation.

Inversion of Geophysical Data with Robust Estimation (로버스트추정에 의한 지구물리자료의 역산)

  • Kim, Hee Joon
    • Economic and Environmental Geology
    • /
    • v.28 no.4
    • /
    • pp.433-438
    • /
    • 1995
  • The most popular minimization method is based on the least-squares criterion, which uses the $L_2$ norm to quantify the misfit between observed and synthetic data. The solution of the least-squares problem is the maximum likelihood point of a probability density containing data with Gaussian uncertainties. The distribution of errors in the geophysical data is, however, seldom Gaussian. Using the $L_2$ norm, large and sparsely distributed errors adversely affect the solution, and the estimated model parameters may even be completely unphysical. On the other hand, the least-absolute-deviation optimization, which is based on the $L_1$ norm, has much more robust statistical properties in the presence of noise. The solution of the $L_1$ problem is the maximum likelihood point of a probability density containing data with longer-tailed errors than the Gaussian distribution. Thus, the $L_1$ norm gives more reliable estimates when a small number of large errors contaminate the data. The effect of outliers is further reduced by M-fitting method with Cauchy error criterion, which can be performed by iteratively reweighted least-squares method.

  • PDF

A Bayesian Approach to Geophysical Inverse Problems (베이지안 방식에 의한 지구물리 역산 문제의 접근)

  • Oh Seokhoon;Chung Seung-Hwan;Kwon Byung-Doo;Lee Heuisoon;Jung Ho Jun;Lee Duk Kee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.4
    • /
    • pp.262-271
    • /
    • 2002
  • This study presents a practical procedure for the Bayesian inversion of geophysical data. We have applied geostatistical techniques for the acquisition of prior model information, then the Markov Chain Monte Carlo (MCMC) method was adopted to infer the characteristics of the marginal distributions of model parameters. For the Bayesian inversion of dipole-dipole array resistivity data, we have used the indicator kriging and simulation techniques to generate cumulative density functions from Schlumberger array resistivity data and well logging data, and obtained prior information by cokriging and simulations from covariogram models. The indicator approach makes it possible to incorporate non-parametric information into the probabilistic density function. We have also adopted the MCMC approach, based on Gibbs sampling, to examine the characteristics of a posteriori probability density function and the marginal distribution of each parameter.

Vertical Profiles of Meteorological Parameters over Taegu City

  • Ahn, Byung-Ho;Kwak, Young-Sil
    • International Union of Geodesy and Geophysics Korean Journal of Geophysical Research
    • /
    • v.22 no.1
    • /
    • pp.24-32
    • /
    • 1994
  • A special upper-air observation including airsonde and pibal observations was performed to investigate the characteristics features of the vertical distribution of the meteorological elements over Taegu on a selected clear day of each season from October 1991 to August 1992. The diurnal and seasonal variations of the vertical profiles of air temperature and mixing ratio were obtained from airsonde observations and wind speed and direction from pibal observations. The results of these special upper-air observations are as follow : The diurnal variation of the vertical distribution of air temperature reveals the characteristic features associated with the atmospheric boundary layer. All case days, except for the summer season, show upper-level inversion layer which influenced by surface high, and surface inversion layer produced by radiative cooling. The diurnal variation of mixing ratio shows the maximum vale at 1500 LST in both the upper and low levels, and is larger on the lower level than the upper level. The mixing ratio of the lower level is larger than that of the upper level. On the average the mixing ratio decrease with the height, and is the wettest on the summer case day and the driest on the winter case day. The diurnal variation of the wind velocity and direction are variable in the lower level with time and height, while they are steady in the upper level. On the average, the wind direction is southerly or southeasterly for the summer case day, westerly or northwesterly for the spring and fall case days, and northerly or northwesterly for the winter case day.

  • PDF