• Title/Summary/Keyword: geometry information

Search Result 1,118, Processing Time 0.024 seconds

Robust Estimation of Fundamental Matrix Using Inlier Distribution (일치점 분포를 이용한 기본행렬 추정)

  • 서정각;조청운;홍현기
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.40 no.5
    • /
    • pp.357-364
    • /
    • 2003
  • The main difficulty in estimating the fundamental matrix stems from the unavoidable outliers inherent in the given correspondence matches. Several researches showed that the estimation results are much dependent on selecting the corresponding points. These represent that it is important to solve the problems due to errors on the point locations and mismatches. In this paper, our analysis shows that if the evenly distributed corresponding points are selected, we can estimate a more precise fundamental matrix. This paper presents novel approaches to estimate the fundamental matrix by considering the inlier distributions. In order to select evenly distributed points, we divide the entire image into the subregions, and then examine the number of the inliers in each subregion and the area of each region. The simulation results showed that our consideration of the inlier distribution can provide a more precise estimation of the fundamental matrix.

Depletion region analysis of silicon substrate using finite element methods (유한요소법을 이용한 실리콘 기판에서의 공핍 영역 해석)

  • Byeon, Gi-Ryang;Hwang, Ho-Jeong
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.39 no.1
    • /
    • pp.1-11
    • /
    • 2002
  • In this paper, new simple method for the calculation of depletion region under complex geometry and general purpose numerical simulator that could handle this were developed and applied in the analysis of SCM with nanoscale tip, which is a promising tool for high resolution dopant profiling. Our simple depletion region seeking algorithm alternatively switches material of elements to align ionized element boundary with contour of zero potential. To prove the validity of our method we examined whether our results satisfy the definition of depletion region and compared those with known values of un junction and MOS structure. By modeling of capacitance based on the shape of depletion region and potential distribution, we could calculate the CV curve and dC/dV curve between silicon substrate and nanoscale SCM tip.

Blood Flow Rate Estimation using Proximal Isovelocity Surface Area Technique Based on Region-Based Contour Scheme and Surface Subdivision Flow Model (영역기반 윤곽선 기법과 표면 분할 유동모델에 기반한 근위 등속 표면적 기법을 이용한 혈류량 추정)

  • Jin, Kyung-Chan;Cho, Jin-Ho
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.1
    • /
    • pp.45-52
    • /
    • 2001
  • The proximal isovelocity surface area (PISA) method is an effective way of measuring the regurgitant blood flow rate in the mitral valve. This method defines the modelling required to describe the geometry of the isotach of the PISA. In the normal PISA flow model, the flow rate is calculated assuming that the surface of the isotach is either hemispherical or non-hemispherical numerically. However, this paper evaluated the estimate flow rate using a direct surface subdivision flow model based on the height field after isotach extraction using a region-based scheme. To validate the proposed method, the various PISA flow models were compared using pusatile color Doppler images with flow rates ranging from $30\;cm^3/sec\;to\;60\;cm^3/sec$ flow rate. Whereas the hemispherical flow model had a mean value of $29\;cm^3/sec$ and underestimated the measured flow rate by 35%, the proposed model and non-hemispherical model produced a c;ame mean value of $45\;cm^3/sec$, moreover, both flow models produced a similar pulsatile flow rate.

  • PDF

Crack Propagation in Earth Embankment Subjected to Fault Movement (단층 운동시 댐 파괴 거동 해석)

  • 손익준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1988.06c
    • /
    • pp.3-67
    • /
    • 1988
  • Model studies on the response of homgeneous earth embankment dams subjected to strike-slip fault movement have been penomed via centrifuge and finite element analysis. The centrifuge model tests have shown that crack development in earth embankment experiences two major patters: shear failure deep inside the embankment and tension failure near the surface. The shear rupture zone develops from the base level and propagates upward continuously in the transverse direction but allows no open leakage chnnel. The open tensile cracks develop near the surface of the embankment, but they disappear deep in the embankment. The functional relationship has been developed based on the results of the centrifuge model tests incorporating tile variables of amount of fault movement, embankment geometry, and crack propagation extent in earth des. This set of information can be used as a guide line to evaluate a "transient" safety of the duaged embankment subjected to strike-slip fault movement. The finite element analysis has supplemented the additional expluations on crack development behavior identified from the results of the centrifuge model tests. The bounding surface time-independent plasticity soil model was employed in the numerical analysis. Due to the assumption of continuum in the current version of the 3-D FEM code, the prediction of the soil structure response beyond the failure condition was not quantitatively accurate. However, the fundamental mechanism of crack development was qualitatively evaluated based on the stress analysis for the deformed soil elements of the damaged earth embankment. The tensile failure zone is identified when the minor principal stress of the deformed soil elements less than zero. The shear failure zone is identified when the stress state of the deformed soil elements is at the point where the critical state line intersects the bounding surface.g surface.

  • PDF

Fuzzy Uncertainty Analysis of the Bird Strike Simulation (퍼지이론을 적용한 불확실성이 존재하는 조류충돌 해석)

  • Lee, Bok-Won;Park, Mi-Young;Kim, Chun-Gon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.35 no.11
    • /
    • pp.983-989
    • /
    • 2007
  • The bird strike simulation is a problem characterized by a high degree of uncertainty. It deals with nonlinear dynamics, complicated models of bird materials and geometry, as well as a plenty of possible boundary and initial conditions. In this complex field, uncertainty management plays an important role. This paper aims to assess the effect of input uncertainty of bird strike analysis on the impact behavior of the leading edge of the WIG(Wing in Ground Effect) craft obtained with finite element analysis using LS-DYNA 3D. The uncertainties of the bird strike simulation arise due to imprecision or lack of information, due to variability or scatter, or as a consequence of model simplification. These uncertain parameters are represented by fuzzy numbers with their membership functions quantifying an initial guess for the actual value of the model parameter. Using the transformation method as a special implementation of fuzzy arithmetic, the model can be analyzed with the intention of determining the influence of each uncertain parameter on the overall bird strike behavior.

Three Dimensional Volume Reconstruction of an Object from X-ray Iamges using Uniform and Simultaneous ART (USART 방법에 의한 X선 영상으로부터의 삼차원 물체의 형상 복원)

  • Roh, Young-Jun;Cho, Hyung-Suck;Kim, Hyeong-Cheol;Kim, Jong-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.1
    • /
    • pp.21-27
    • /
    • 2002
  • Inspection and shape measurement of three-dimensional objects are widely needed in industries for quality monitoring and control. A number of visual or optical technologies have been successfully applied to measure three-dimensional surfaces. However, those conventional visual or optical methods have inherent shortcomings such as occlusion and variant surface reflection. X-ray vision system can be a good solution to these conventional problems, since we can extract the volume information including both the surface geometry and the inner structure of any objects. In the x-ray system, the surface condition of an object, whether it is lambertian or specular, does not affect the inherent characteristics of its x-ray images. In this paper, we propose a three-dimensional x-ray imaging method to reconstruct a three dimensional structure of an object out of two dimensional x-ray image sets. To achieve this by the proposed method, two or more x-ray images projected from different views are needed. Once these images are acquired, the simultaneous algebraic reconstruction technique(SART) is usually utilized. Since the existing SART algorithms have several shortcomings such as low performance in convergence and different convergence within the reconstruction volume of interest, an advanced SART algorithm named as USART(uniform SART) is proposed to avoid such shortcomings and improve the reconstruction performance. Because, each voxel within the volume is equally weighted to update instantaneous value of its internal density, it can achieve uniform convergence property of the reconstructed volume. The algorithm is simulated on various shapes of objects such as a pyramid, a hemisphere and a BGA model. Based on simulation results the performance of the proposed method is compared with that of the conventional SART method.

Space Weather Research using GPS Radio Occultation Soundings (GPS 전파엄폐 탐측자료의 우주기상 활용방안)

  • Shin, Dae-Yun;Manandhar, Dinesh;Lee, Jeong-Deok;Yi, Jong-Hyuk;Kim, Hae-Yeon;Lee, Yang-Won
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.14-22
    • /
    • 2013
  • GPS radio occultation is a remote sensing technique probing atmospheric properties based on the fact that GPS signal is refracted and delayed by atmosphere. The FORMOSAT-3/COSMIC mission jointly developed by the USA and Taiwan is providing about 2500 occultation soundings a day on the near real-time basis. The Korean KOMPSAT-5/AOPOD system is preparing to launch for monitoring troposphere and ionosphere using a dual frequency GPS receiver and the antenna for occultation data acquisition. In this paper, we examine the methods for signal processing and the geometry analysis for GPS radio occultation, and look into the retrieval techniques for the temperature and humidity of troposphere and the electron density and scintillation of ionosphere. Using these atmospheric properties, we aim to derive the strategies for applying GPS radio occultation to space weather, for example, ionospheric TEC(total electron content) analysis for earthquake monitoring and the Open API(application programming interface) development for more effective data service.

A Design of Solar Proton Telescope for Next Generation Small Satellite

  • Sohn, Jongdae;Oh, Suyeon;Yi, Yu;Min, Kyoung-Wook;Lee, Dae-Young;Seon, Jongho
    • Journal of Astronomy and Space Sciences
    • /
    • v.29 no.4
    • /
    • pp.343-349
    • /
    • 2012
  • The solar proton telescope (SPT) is considered as one of the scientific instruments to be installed in instruments for the study of space storm (ISSS) which is determined for next generation small satellite-1 (NEXTSat-1). The SPT is the instrument that acquires the information on energetic particles, especially the energy and flux of proton, according to the solar activity in the space radiation environment. We performed the simulation to determine the specification of the SPT using geometry and tracking 4 (GEANT4). The simulation was performed in the range of 0.6-1,000 MeV considering that the proton, which is to be detected, corresponds to the high energy region according to the solar activity in the space radiation environment. By using aluminum as a blocking material and adjusting the energy detection range, we determined total 7 channels (0.6~5, 5~10, 10~20, 20~35, 35~52, 52~72, and >72 MeV) for the energy range of SPT. In the SPT, the proton energy was distinguished using linear energy transfer to compare with or discriminate from relativistic electron for the channels P1-P3 which are the range of less than 20 MeV, and above those channels, the energy was determined on the basis of whether silicon semiconductor detector (SSD) signal can pass or not. To determine the optimal channel, we performed the conceptual design of payload which uses the SSD. The designed SPT will improve the understanding on the capture and decline of solar energetic particles at the radiation belt by measuring the energetic proton.

A Study on Cost Reduction Effect of Drone Implementation in Traffic Survey (교통조사부문 드론 활용시 비용절감효과 분석 연구)

  • Kim, Dongjun;Ahn, Hyosub;Kim, Jin-tae
    • International Journal of Highway Engineering
    • /
    • v.20 no.4
    • /
    • pp.73-84
    • /
    • 2018
  • PURPOSES : Most of the traffic surveys are carried out by an inspection method by the manpower. In some cases, the video equipment is used only in some regions when the traffic volume is surveyed. In this case, there is environmental restriction that the road equipment to fix the video equipment should exist. Also, in areas where information such as digital maps and satellite photographs is old or not provided, they are forced to rely on manpower research, but it is difficult to put huge amounts of time and money into the research in places where labor supply and demand is difficult. This difficulty is particularly pronounced in overseas business. METHODS : The purpose of this study is to improve the efficiency of business by using the drones in the traffic investigation through analysis of the cost reduction effect between the existing method and the proposed method in the overseas business traffic survey. The scope of the research is limited to the scope of research, and based on the case of overseas projects, the method of using drone for each research sector is suggested. RESULTS : In the traffic condition survey section, we propose the use of drone for traffic survey and queue length survey, and it is confirmed that there is a cost saving effect of 16% ~ 27% compared with the existing method. In the road condition survey, we propose the use of drones for road surface linear survey, geometry survey, and obstacle survey, and it was confirmed that the cost reduction effect is 39% ~ 93% compared to the existing method. CONCLUSIONS : In addition to overseas business, it is expected that it will have a positive effect on research time and cost reduction by using drone in traffic survey in domestic area where labor supply is not easy or basic data is insufficient.

Relationship between roar sound characteristics and body size of Steller sea lion

  • Park, Tae-Geon;Iida, Kohji;Mukai, Tohru
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.46 no.4
    • /
    • pp.458-465
    • /
    • 2010
  • Hundreds of Steller sea lions, Eumetopias jubatus, migrate from Sakhalin and the northern Kuril Islands to Hokkaido every winter. During this migration, they may use their roaring sounds to navigate and to maintain their groups. We recorded the roars of wild Steller sea lions that had landed on reefs on the west coast of Hokkaido, and those of captive sea lions, while making video recordings. A total of 300 roars of wild sea lions and 870 roars of captive sea lions were sampled. The fundamental frequency ($F_0$), formant frequency ($F_1$), pulse repetition rate (PRR), and duration of syllables (T) were analyzed using a sonagraph. $F_0$, $F_1$, and PRR of the roars emitted by captive sea lions increased in the order male, female, and juvenile. By contrast, the $F_1$ of wild males was lower than that of females, while the $F_0$ and PRR of wild males and females did not differ statistically. Moreover, the $F_0$ and $F_1$ frequencies for captive sea lions were higher than those of wild sea lions, while PRR in captive sea lions was lower than in wild sea lions. Since there was a linear relationship between body length and the $F_0$ and $F_1$ frequencies in captive sea lions, the body length distribution of wild sea lions could be estimated from the $F_0$ and $F_1$ frequency distribution using a regression equation. These results roughly agree with the body length distribution derived from photographic geometry. As the volume of the oral cavity and the length of the vocal cords are generally proportional to body length, sampled roars can provide useful information about a population, such as the body length distribution and sex ratio.