• Title/Summary/Keyword: geometrically nonlinear analysis

Search Result 201, Processing Time 0.021 seconds

The Dynamic Post-Buckling Analysis of the Non-Conservative System including Damping Effects (감쇠효과(減衰效果)를 고려한 비보존력계(非保存力系)의 동적(動的) 후좌굴(後挫屈) 해석(解析))

  • Kim, Moon Young;Chang, Sung Pil
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.10 no.3
    • /
    • pp.67-75
    • /
    • 1990
  • A geometrically nonlinear analysis procedure including the damping effects is presented for the investigation of the dynamic post-divergence and post-flutter behavior of a non-conservative system. The dynamic nonlinear analysis of plane frame structure subjected to conservative and non-conservative forces is carried out by solving the equations of motion using Newmark method. Numerical results are presented to demonstrate the effects of the internal and external damping forces in the conservative and non-conservative systems.

  • PDF

Geometrically Nonlinear Dynamic Analysis of Cable Domes (케이블 돔의 기하학적 비선형 동적해석)

  • 한상을;서준호;김종범
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.61-68
    • /
    • 2003
  • Cable domes deform very largely because of the characteristics of flexible hybrid system and pre-tension, and include geometrical non-linearity in those structural behavior. Especially wind load is more dominant than seismic loads, because cable domes are flexible structures whose stiffness is very small and self-weight is very light. Therefore, in this paper, Modified Stiffly Stable Method is applied to analyze the nonlinear dynamic behavior of cable domes and compared these results with ones of Newmark-β Method which is generally used. The Seoul Olympic Gymnastic Arena is taken as an numerical example and three kinds of models with giving each different intensity of pre-tension are selected. And dynamic nonlinear behavior of cable domes are analyzed by artificial spectrum of wind velocity wave which is similar to actual wind loads.

  • PDF

Large displacement geometrically nonlinear finite element analysis of 3D Timoshenko fiber beam element

  • Hu, Zhengzhou;Wu, Minger
    • Structural Engineering and Mechanics
    • /
    • v.51 no.4
    • /
    • pp.601-625
    • /
    • 2014
  • Based on continuum mechanics and the principle of virtual displacements, incremental total Lagrangian formulation (T.L.) and incremental updated Lagrangian formulation (U.L.) were presented. Both T.L. and U.L. considered the large displacement stiffness matrix, which was modified to be symmetrical matrix. According to the incremental updated Lagrangian formulation, small strain, large displacement, finite rotation of three dimensional Timoshenko fiber beam element tangent stiffness matrix was developed. Considering large displacement and finite rotation, a new type of tangent stiffness matrix of the beam element was developed. According to the basic assumption of plane section, the displacement field of an arbitrary fiber was presented in terms of nodal displacement of centroid of cross-area. In addition, shear deformation effect was taken account. Furthermore, a nonlinear finite element method program has been developed and several examples were tested to demonstrate the accuracy and generality of the three dimensional beam element.

Structural Behavior Analysis of Two-way RC Slabs by p-Version Nonlinear Finite Element Model (p-Version 비선형 유한요소모텔에 의한 2방향 철근 콘크리트 슬래브의 역학적 거동해석)

  • Cho, Jin-Goo;Park, Jin-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.4
    • /
    • pp.15-24
    • /
    • 2005
  • This study is focused on modeling to predict the behavior of two-way RC slabs. A new finite element model will be presented to analyze the nonlinear behavior of RC slabs. The numerical approach is based on the p-version degenerate shell element including theory of anisotropic laminated composites, theory of materially and geometrically nonlinear plates. In the nonlinear formulation of this model, the total Lagrangian formulation is adopted with large deflections and moderate rotations being accounted for in the sense of von Karman hypothesis. The material model is based on the Kuper's yield criterion, hardening rule, and crushing condition. The validity of the proposed p-version nonlinear RC finite element model is demonstrated through the load-deflection curves and the ultimate loads. It is shown that the proposed model is able to adequately predict the deflection and ultimate load of two-way slabs with respect to steel arrangements and steel ratios.

Geometrically Nonlinear Analysis of Stiffened Shell Structures Using the Assumed Strain Shell Element (가정변형도 쉘요소를 이용한 보강된 쉘구조의 기하학적 비선형해석)

  • 최명수;김문영;장승필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.13 no.2
    • /
    • pp.209-220
    • /
    • 2000
  • For non-linear analysis of stiffened shell structures, the total Lagrangian formulation is presented based upon the degenerated shell element. Geometrically correct formulation is developed by updating the direction of normal vectors and taking into account second order rotational terms in the incremental displacement field. Assumed strain concept is adopted in order to overcome shear locking phenomena and to eliminate spurious zero energy mode. The post-buckling behaviors of stiffened shell structures are traced by modeling the stiffener as a shell element and considering general transformation between the main structure and the stiffener at the connection node. Numerical examples to demonstrate the accuracy and the effectiveness of the proposed shell element are presented and compared with references' results.

  • PDF

Numerical Analysis of Nonlinear Thermoelastic Stress for Rectangular Thin Plate (사각형 박판의 비선형 열탄성 응력 수치해석)

  • Kim Chi-Kyung;Kim Sung-Jung
    • Journal of the Korean Society of Safety
    • /
    • v.19 no.4 s.68
    • /
    • pp.155-160
    • /
    • 2004
  • A simply supported rectangular thin plate with temperature distribution varying over the thickness is analyzed. Since the thermal deflections are large compared to the plate thickness during bending and membrane stresses are developed md as such a nonlinear stress analysis is necessary. For the geometrically nonlinear, large deflection behavior of the plate, the classical von Karman equations are used. These equations are solved numerically by using the finite difference method. An iterative technique is employed to solve these quasi-linear algebraic equations. The results obtained from the suggested method are presented and discussed.

Geometrically nonlinear analysis of sandwich beams under low velocity impact: analytical and experimental investigation

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Steel and Composite Structures
    • /
    • v.27 no.3
    • /
    • pp.273-283
    • /
    • 2018
  • Nonlinear low velocity impact response of sandwich beam with laminated composite face sheets and soft core is studied based on Extended High Order Sandwich Panel Theory (EHSAPT). The face sheets follow the Third order shear deformation beam theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the two dimensional elasticity is used for the core. The nonlinear Von Karman type relations for strains of face sheets and the core are adopted. Contact force between the impactor and the beam is obtained using the modified Hertz law. The field equations are derived via the Ritz based applied to the total energy of the system. The solution is obtained in the time domain by implementing the well-known Runge-Kutta method. The effects of boundary conditions, core-to-face sheet thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that each of these parameters have significant effect on the impact characteristics which should be considered. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The contact force histories predicted by EHSAPT are in good agreement with that obtained by experimental results.

A Nonlinear Analysis of Two-Dimensional Beam Finite Elements (2차원(次元) 보 유한요소(有限要素) 비선형(非線型) 해석(解析))

  • Shin, Young Shik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.4 no.3
    • /
    • pp.53-61
    • /
    • 1984
  • A nonlinear formulation of a beam finite element(NB6) on the total Lagrangian mode for the geometrically nonlinear analysis of two-dimensional elastic framed structures is presented. The NB6 beam element has been degenerated from the three-dimensional continuum by introducing the deep beam assumptions and consists of three reference nodes and three relative nodes. The element characteristics are derived by discretizing the beam equations of motion using the Galerkin weighted residual method and are reduced-integrated repeatedly for each loading step by the Newton-Raphson iteration techpique. Several numerical examples are given to demonstrate the accuracy and versatility of the proposed nonlinear NB6 beam element.

  • PDF

Toward a More Complete Analysis for Fluid-Structure Interaction in Helicopters

  • Kim, Kyung-Hwan;Shin, Sang-Joon;Lee, Jae-Won;Yee, Kwan-Jung;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.7 no.2
    • /
    • pp.110-120
    • /
    • 2006
  • There have been developed many structural and fluid rotorcraft analysis models in rotorcraft community, and also lots of investigations have been conducted to combine these two models. These investigations turn out to be good at predicting the airloads precisely, but they have not taken the blade nonlinear deflection into account. For this reason, the present paper adopts a sophisticated structural model which can describe three-dimensional nonlinear deflection of the blade. And it is combined with two types of aerodynamic model. First one is generalized Greenberg type of finite-time aerodynamic model, which is originally established for a fixed wing, but later modified to be suitable for coupled flap-lag-torsional aeroelastic analysis of the rotor blade. Second aerodynamic model is based on the unsteady source-doublet panel method coupled with a free wake model. The advantages of the present method are capabilities to consider thickness of the blade and more precise wake effects. Transient responses of the airloads and structural deflections in time domain are mainly analyzed in this paper.

Geometrically Nonlinear Analysis using Petrov-Galerkin Natural Element Method Natural Element Method (페트로프-갤러킨 자연요소법에 의한 기하하적 비선형 해석)

  • 이홍우;조진래
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.333-340
    • /
    • 2004
  • This paper deals with geometric nonlinear analyses using a new meshfree technique which improves the numerical integration accuracy. The new method called the Petrov-Galerkin natural element method (PGNEM) is based on the Voronoi diagram and the Delaunay triangulation which is based on the same concept used for conventional natural element method called the Bubnov-Galerkin natural element method (BGNEM). But, unlike BGNEM, the test shape function is differently chosen from the trial shape function. In the linear static analysis, it is ensured that the numerical integration error of the PGNEM is remarkably reduced. In this paper, the PGNEM is applied to large deformation problems, and the accuracy of the proposed numerical technique is verified through the several examples.

  • PDF