• Title/Summary/Keyword: geometrical factor

Search Result 236, Processing Time 0.026 seconds

Thermal Performance Analysis and Optimization of Passive Solar System (자연형 태양열시스템의 열성능해석 및 최적화)

  • Lee, Won-Keun
    • Solar Energy
    • /
    • v.12 no.2
    • /
    • pp.51-61
    • /
    • 1992
  • A numerical study on the Trombe wall system, a kind of passive solar systems, has been peformed. The system is modelled as the 2-dimensional steady laminar flow with the natural convection. The PHOENICS code was employed to analyse the performance variation due to the change in the geometrical factor. The mass flow rate and the maximum temperature are changed by the variations in the width of the vents, the width between the window and the wall, and the location of the vents. And there exists the optimal condition to maximize the utilization factor. Further precise analysis has been performed to show the optimal geometry with regard to the above three factors.

  • PDF

An Accurate Calibration Technique for X ray Imaging System (X-선 영상 시스템의 정밀 캘리브레이션 기법)

  • Cho, Young-Bin;Gweon, Dae-Gab
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.3 s.96
    • /
    • pp.198-207
    • /
    • 1999
  • This paper presents an accurate algorithm for geometric calibration of X-ray imaging system. Calibration is a very important process for improving an imaging system performance. There has been a lot of previous works using linear camera modeling technique, where lens distortion is neglected and/or center of distortion is assumed to be known. Geometrical distortion of image intensifier, however, is very large and its center of distortion should be calculated. This paper presents a new calibration method to estimate the intensifier position and orientation, scale factor, distortion coefficient, magnification factor, and center of distortion using the least square method. We investigate the properties of the algorithm by computer simulation. Simulation results show that the parameters can be estimated accurately using the proposed algorithm.

  • PDF

Nonlocal nonlinear stability of higher-order porous beams via Chebyshev-Ritz method

  • Ahmed, Ridha A.;Mustafa, Nader M.;Faleh, Nadhim M.;Fenjan, Raad M.
    • Structural Engineering and Mechanics
    • /
    • v.76 no.3
    • /
    • pp.413-420
    • /
    • 2020
  • Considering inverse cotangential shear strain function, the present paper studies nonlinear stability of nonlocal higher-order refined beams made of metal foams based on Chebyshev-Ritz method. Based on inverse cotangential beam model, it is feasible to incorporate shear deformations needless of shear correction factor. Metal foam is supposed to contain different distributions of pores across the beam thickness. Also, presented Chebyshev-Ritz method can provide a unified solution for considering various boundary conditions based on simply-supported and clamped edges. Nonlinear effects have been included based upon von-karman's assumption and nonlinear elastic foundation. The buckling curves are shown to be affected by pore distribution, geometric imperfection of the beam, nonlocal scale factor, foundation and geometrical factors.

SCFs in offshore two-planar tubular TT-joints reinforced with internal ring stiffeners

  • Ahmadi, Hamid;Imani, Hossein
    • Ocean Systems Engineering
    • /
    • v.12 no.1
    • /
    • pp.1-22
    • /
    • 2022
  • The majority of tubular joints commonly found in offshore jacket structures are multi-planar. Investigating the effect of loaded out-of-plane braces on the values of the stress concentration factor (SCF) in offshore tubular joints has been the objective of numerous research works. However, due to the diversity of joint types and loading conditions, a number of quite important cases still exist that have not been studied thoroughly. Among them are internally ring-stiffened two-planar TT-joints subjected to axial loading. In the present research, data extracted from the stress analysis of 243 finite element (FE) models, verified against available numerical and experimental data, was used to study the effects of geometrical parameters on the chord-side SCFs in two-planar tubular TT-joints reinforced with internal ring stiffeners subjected to two types of axial loading. Parametric FE study was followed by a set of nonlinear regression analyses to develop six new SCF parametric equations for the fatigue analysis and design of axially-loaded two-planar TT-joints reinforced with internal ring stiffeners.

Analysis of Geometrical Effects on Heat Transfer Characteristics in a Modular Flat Tube-Bundle Heat Exchanger (모듈형 편평원관군 열교환기의 열전달 특성 해석)

  • Park, Byung-Kyu;Lee, Joon-Sik
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.17 no.11
    • /
    • pp.1014-1021
    • /
    • 2005
  • Flow channels with non-circular cross-sections are encountered in a wide variety of heat exchangers. Accurate friction factor and Colburn j factor data are essential for the design and viable applications of such heat exchangers. In this study, an analysis is con ducted on heat transfer and pressure drop characteristics for tube-bundle heat exchanger with various arrangements of tubes, of which their geometry could easily be modified from a circular one in a harsh environment. The parameters investigated are aspect ratio, pitch, and inclined angle of tubes. The results obtained are: (1) Aspect ratio has larger influence on the j and f factor than pitch; (2) As aspect ratio increases, both j and f factors decrease; (3) The high performance is achieved when the pitch and aspect ratio are in the range of 1.5${\~}$2.5 and 1.25${\~}$2.0, respectively; and (4) the inclined arrangements of tubes show unfavorable results for both heat transfer and pressure drop characteristics in spite of the positive possibility of condensate removals in a latent heat recovery system.

Investigation on the Electromagnetic Characteristics of CMOS Rectangular Spiral Inductors according to the Geometrical Change (CMOS 직사각형 나선 인덕터의 기하학적 변화에 따른 전자기적 특성에 관한 연구)

  • Jin Kyoung-Shin;Kim Young-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.41 no.12
    • /
    • pp.125-130
    • /
    • 2004
  • The characteristics of on-chip spiral rectangular inductors in CMOS process are investigated through the simulation and experiment. The ADS-momentum is used for EM simulation, and the spiral inductors are fabricated with Hynix 0.35㎛ CMOS process. This research mainly concerned the effects of the geometric change in terms of the number of turns and the width of micro strip line. The measured and simulated results show that the Hynix 0.35㎛ process could support a top metal spiral inductor of 1nH to 6nH with Q-factor less than 5.

Fracture mechanical evaluation of fatigue strength of a single spot welded lap joint under tension-shear load (인장-전단하중을 받는 일점 Spot용접재의 파괴역학적 피로강도 평가)

  • 배동호
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.5
    • /
    • pp.42-50
    • /
    • 1991
  • According as the members and inner and outer plates of the automobile body structure have been thinned their thickness and have become high strength, each part of the body structure has been put more severe stress condition. Therefore, it has been increasingly required to improve the fatigue strength of the spot welded structures. As one of the improving methods for such problem, the author had previously proposed the method of alleviating stress concentration at nugget edge of the spot weld part and improving its fatigue strength [1]. But, because fatigue strength of the spot welded lap joint is influenced by its geometrical and mechanical factors, welding condition and etc., there needs a quantitative and systematic estimation method of them. In this report, by considering nugget edge of the spot weld part of the spot welded lap joint subjected to tensile load to the ligament crack, fatigue strength of various spot welded lap joints was estimated with the stress intensity factor (S.I.F.) K which is fracture mechanical parameter. It is known that evaluation of fatigue strength of the spot welded lap joint by the stress intensity factor (S.I.F.) K is more effective than the maximum stress $(\sigma_{ymax}$) at edge of the spot weld part on the center line of width of the plate.

  • PDF

Stress intensity factor calculation for semi-elliptical cracks on functionally graded material coated cylinders

  • Farahpour, Peyman;Babaghasabha, Vahid;Khadem, Mahdi
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1087-1097
    • /
    • 2015
  • In this paper, the effect of functionally graded material (FGM) coatings on the fracture behavior of semi-elliptical cracks in cylinders is assessed. The objective is to calculate the stress intensity factor (SIF) of a longitudinal semi-elliptical crack on the wall of an aluminum cylinder with FGM coating. A three-dimensional finite element method (FEM) is used for constructing the mechanical models and analyzing the SIFs of cracks. The effect of many geometrical parameters such as relative depth, crack aspect ratio, FG coating thickness to liner thickness as well as the mechanical properties of the FG coating on the SIF of the cracks is discussed. For a special case, the validity of the FE model is examined. The results indicated that there is a particular crack aspect ratio in which the maximum value of SIFs changes from the deepest point to the surface point of the crack. Moreover, it was found that the SIFs decrease by increasing the thickness ratio of the cylinder. But, the cylinder length has no effect on the crack SIFs.

Orthogonal variable spreading factor encoded unmanned aerial vehicle-assisted nonorthogonal multiple access system with hybrid physical layer security

  • Omor Faruk;Joarder Jafor Sadiqu;Kanapathippillai Cumanan;Shaikh Enayet Ullah
    • ETRI Journal
    • /
    • v.45 no.2
    • /
    • pp.213-225
    • /
    • 2023
  • Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.

Bearing capacity at the pile tip embedded in rock depending on the shape factor and the flow

  • Ana S. Alencar;Ruben A. Galindo;Miguel A. Millan
    • Computers and Concrete
    • /
    • v.31 no.5
    • /
    • pp.443-455
    • /
    • 2023
  • This is a research analyses on the bearing capacity at a pile tip embedded in rock. The aim is to propose a shape coefficient for an analytical solution and to investigate the influence of the plastic flow law on the problem. For this purpose, the finite difference method is used to analyze the bearing capacity of various types and states of rock masses, assuming the Hoek & Brown failure criterion, by considering both plane strain and an axisymmetric model. Different geometrical configurations were adopted for this analysis. First, the axisymmetric numerical results were compared with those obtained from the plane strain analytical solution. Then the pile shape influence on the bearing capacity was studied. A shape factor is now proposed. Furthermore, an evaluation was done on the influence of the plastic flow law on the pile tip bearing capacity. Associative flow and non-associative flow with null dilatancy were considered, resulting in a proposed correlation. A total of 324 cases were simulated, performing a sensitivity analysis on the results and using the graphic output of vertical displacement and maximum principal stress to understand how the failure mechanism occurs in the numerical model.