DOI QR코드

DOI QR Code

Orthogonal variable spreading factor encoded unmanned aerial vehicle-assisted nonorthogonal multiple access system with hybrid physical layer security

  • Omor Faruk (Department of Electrical and Electronic Engineering, University of Rajshahi) ;
  • Joarder Jafor Sadiqu (Department of Electrical and Electronic Engineering, Begum Rokeya University) ;
  • Kanapathippillai Cumanan (Department of Electronic Engineering, University of York) ;
  • Shaikh Enayet Ullah (Department of Electrical and Electronic Engineering, University of Rajshahi)
  • 투고 : 2021.11.10
  • 심사 : 2022.11.14
  • 발행 : 2023.04.20

초록

Physical layer security (PLS) can improve the security of both terrestrial and nonterrestrial wireless communication networks. This study proposes a simplified framework for nonterrestrial cyclic prefixed orthogonal variable spreading factor (OVSF)-encoded multiple-input and multiple-output nonorthogonal multiple access (NOMA) systems to ensure complete network security. Various useful methods are implemented, where both improved sine map and multiple parameter-weighted-type fractional Fourier transform encryption schemes are combined to investigate the effects of hybrid PLS. In addition, OVSF coding with power domain NOMA for multi-user interference reduction and peak-toaverage power ratio (PAPR) reduction is introduced. The performance of $\frac{1}{2}$-rated convolutional, turbo, and repeat and accumulate channel coding with regularized zero-forcing signal detection for forward error correction and improved bit error rate (BER) are also investigated. Simulation results ratify the pertinence of the proposed system in terms of PLS and BER performance improvement with reasonable PAPR.

키워드

참고문헌

  1. J. Tang, L. Jiao, K. Zeng, H. Wen, and K.-Y. Qin, Physical layer secure MIMO communications against eavesdroppers with arbitrary number of antennas, IEEE Trans. Inform. Forensics Secur. 16 (2020), 466-481. https://doi.org/10.1109/TIFS.2020.3015548
  2. 3GPP: 5G; NR; Physical layer; General description. Technical Specification (TS) 38.201. 3rd Generation Partnership Project (3GPP), 2018. Version 15.0.0.
  3. G. Wikstrom, J. Peisa, P. Rugeland, N. Johansson, S. Parkvall, M. Girnyk, G. Mildh, and I. L. Da Silva, Challenges and technologies for 6G, 2nd 6G Wireless Summit (6G Summit), Levi, Finaland, 2020, pp. 1-5.
  4. M. Giordani and M. Zorzi, Non-terrestrial networks in the 6G era: challenges and opportunities, IEEE Netw. 35 (2020), no. 2, 244-251. https://doi.org/10.1109/MNET.011.2000493
  5. W. Saad, M. Bennis, M. Mozaffari, and X. Lin, Wireless communications and networking for unmanned aerial vehicles, Cambridge University Press, 2020.
  6. J. J. Sadique, S. E. Ullah, M. R. Islam, R. Raad, A. Z. Kouzani, and M. A. P. Mahmud, Transceiver design for full-duplex UAV based zero-padded OFDM system with physical layer security, IEEE Access 9 (2021), 59432-59445. https://doi.org/10.1109/ACCESS.2021.3073488
  7. X. Sun, W. Yang, and Y. Cai, Secure communication in nomaassisted millimeter-wave SWIPT UAV networks, IEEE Int. Things J. 7 (2019), no. 3, 1884-1897.
  8. A. Abushattal, S. Althunibat, M. Qaraqe, and H. Arslan, A secure downlink NOMA scheme against unknown internal eavesdroppers, IEEE Wirel. Commun. Lett. 10 (2021), no. 6, 1281-1285. https://doi.org/10.1109/LWC.2021.3064234
  9. J. Zhao, Y. Wang, Z. Fei, X. Wang, and Z. Miao, NOMA-aided UAV data collection system: trajectory optimization and communication design, IEEE Access 8 (2020), 155843-155858. https://doi.org/10.1109/ACCESS.2020.3019080
  10. Z. H. E. Tan, A. S. Madhukumar, R. P. Sirigina, and A. K. Krishna, NOMA-aided multi-UAV communications in fullduplex heterogeneous networks, IEEE Syst. J. 15 (2020), no. 2, 2755-2766.
  11. A. Masaracchia, L. D. Nguyen, T. Q. Duong, C. Yin, O. A. Dobre, and E. Garcia-Palacios, Energy-efficient and throughput fair resource allocation for TS-NOMA UAV-assisted communications, IEEE Trans. Commun. 68 (2020), no. 11, 7156-7169. https://doi.org/10.1109/TCOMM.2020.3014939
  12. H. Zhang, J. Zhang, and K. Long, Energy efficiency optimization for NOMA UAV network with imperfect CSI, IEEE J. Sel. Areas Commun. 38 (2020), no. 12, 2798-2809. https://doi.org/10.1109/JSAC.2020.3005489
  13. T. Hou, Y. Liu, Z. Song, X. Sun, and Y. Chen, UAV-toeverything (U2X) networks relying on noma: a stochastic geometry model, IEEE Trans. Vehic. Technol. 69 (2020), no. 7, 7558-7568. https://doi.org/10.1109/TVT.2020.2994167
  14. X. Chen, D. Li, Z. Yang, Y. Chen, N. Zhao, Z. Ding, and F. R. Yu, Securing aerial-ground transmission for NOMA-UAV networks, IEEE Netw. 34 (2020), no. 6, 171-177.
  15. N. Zhao, Y. Li, S. Zhang, Y. Chen, W. Lu, J. Wang, and X. Wang, Security enhancement for NOMA-UAV networks, IEEE Trans. Vehic. Technol. 69 (2020), no. 4, 3994-4005. https://doi.org/10.1109/TVT.2020.2972617
  16. X. Chen, N. Zhao, Y. Chen, Z. Yang, Z. Ding, and F. R. Yu, Power allocation for secure transmission in circular trajectory NOMA-UAV networks, IEEE 31st Annual International Symposium on Personal, Indoor and Mobile Radio Communications, London, UK, 2020, pp. 1-6.
  17. H. Ogras, and M. Turk, A secure chaos-based image cryptosystem with an improved sine key generator, Am. J. Signal Process. 6 (2016), no. 3, 67-76.
  18. F. Liu, L. Wang, J. Xie, Y. Wang, and Z. Zhang, MP-WFRFT and chaotic scrambling aided directional modulation technique for physical layer security enhancement, IEEE Access 7 (2019), 74459-74470. https://doi.org/10.1109/ACCESS.2019.2921109
  19. S. Huang, M. Xiao, and H. V. Poor, On the physical layer security of millimeter wave noma networks, IEEE Trans. Vehic. Technol. 69 (2020), no. 10, 11697-11711. https://doi.org/10.1109/TVT.2020.3017086
  20. S. Bawane and V. V. Gohokar, Simulation of convolutional encoder, Int. J. Res. Eng. Technol. (IJRET), India 3 (2014), no. 3, 557-561.
  21. G. A. Vitetta, D. P. Taylor, G. Colavolpe, F. Pancaldi, and P. A. Martin, Wireless communications: algorithmic techniques, John Wiley & Sons, 2013.
  22. T. S. Rappaport, Wireless communications: principles and practice, Vol. 2, Prentice Hall PTR New Jersey, 1996.
  23. Y.-S. Chen and T.-L. Lin, Code placement and replacement schemes for WCDMA rotated-OVSF code tree management, IEEE Trans. Mobile Comput. 5 (2006), no. 3, 224-239. https://doi.org/10.1109/TMC.2006.30
  24. M. R. Usman, A. Khan, M. A. Usman, and S. Y. Shin, Joint non-orthogonal multiple access (NOMA) & Walsh-Hadamard transform: enhancing the receiver performance, China Commun. 15 (2018), no. 9, 160-177. https://doi.org/10.1109/CC.2018.8456460
  25. T. Younas, J. Li, J. Arshad, H. M. Munir, M. M. Tulu, and O. Younas, Performance of ZF and RZF in massive MIMO with channel aging, 3rd IEEE International Conference on Computer and Communications, Chengdu, China, 2017, pp. 930-934.
  26. R. I. Bor-Yaliniz, A. El-Keyi, and H. Yanikomeroglu, Efficient 3-D placement of an aerial base station in next generation cellular networks, IEEE International Conference on Communications, Kuala Lumpur, Malaysia, 2016, pp. 1-5.
  27. J. J. Sadique, S. R. Sabuj, S. E. Ullah, S. K. Joarder, and M. Hamamura, UAV-aided transceiver design for secure downlink OW-DFTS-OFDM system: a multi-user mmwave application, IEEE Access 10 (2022), 34577-34590. https://doi.org/10.1109/ACCESS.2022.3162628
  28. A. Haddad, D. Slimani, A. Nafkha, and F. Bader, Users' power multiplexing limitations in NOMA system over Gaussian channel, 8th International Conference on Wireless Networks and Mobile Communications (WINCOM), Reims, France, 2020, pp. 1-7.
  29. A. Farzamnia, E. Moung, B. V. Malitam, and M. K. Haldar, BER analysis for OFDM systems with various modulation techniques in Rayleigh fading channel, 10th International Conference on Computational Intelligence and Communication Networks (CICN), Esbjerg, Denmark, 2018, pp. 40-44.
  30. F. T. Al Rabee and R. D. Gitlin, Performance of uplink nonorthogonal multiple access (NOMA) in the presence of channel estimation errors, 18th Annual Wireless Telecommunications Symposium (WTS 2019), New York, USA, 2019, pp. 1-5.