• Title/Summary/Keyword: geometrical analyses

Search Result 154, Processing Time 0.025 seconds

Characteristic Analysis of a Small ALIP for the Developing of the Liquid Sodium (액체 소듐 순환 구동용 소형 환단면 선형유도전자펌프의 특성 분석)

  • Kim, Hee-Reyoung;Kim, Jong-Man;Nam, Ho-Yun;Hwang, Jong-Sun;Seo, Jang-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.1-3
    • /
    • 1999
  • EM (ElectroMagnetic) pump is used for the purpose of transporting liquid sodium coolant with electrical conductivity in the LMR(Liquid Metal Reactor). (In the present study, pilot EM pump has been designed by using of equivalent circuit method which is commonly employed to analyze linear induction machines for the test of removal of residual heat. The length and diameter of the pump have fixed values of 840 mm and 101.6 mm each by taking account of geometrical size of circulation loop for the installation of EM pump. Flowrate versus developing pressure is related from Laithwaite's standard design formula and the characteristic analyses of developing force and efficiency are carried out according to change of input frequency. From the characteristic curve, input frequency of 13 Hz is determined as the design frequency. On the other hand, The annular air gap size of 6.05 mm is selected not to bring about too much hydraulic loss. Resultantly design analysis makes pump have the electrical input of 604 VA and the hydrodynamical capacity of 1.3 bars and 40 l/min.

  • PDF

NUMERICAL METHOD FOR EVALUATION OF HYDROGEN FLAME ACCELERATION IN A COMPARTMENT OF A NUCLEAR POWER PLANT (원자력발전소 격실에서의 수소화염 가속에 대한 수치해석 연구)

  • Kim, Jong-Tae;Kim, Sang-Baik;Kim, Hoo-Joong
    • Journal of computational fluids engineering
    • /
    • v.15 no.4
    • /
    • pp.67-75
    • /
    • 2010
  • Hydrogen safety is one of important issues for future public usage of hydrogen. When hydrogen is released in a compartment, the occurrence of detonation must be prohibited. In order to evaluate the possibility of DDT (Deflagration to Detonation Transition) in the compartment with the hydrogen release, sigma-lambda criteria which were developed from experimental data are commonly used. But they give a little conservative results because they do not consider the detailed geometrical effect of the compartment. This is the main reason of the need to mechanistic combustion model for evaluation of hydrogen flame propagation and acceleration. In this study, sigma-lambda criteria and combustion model were systematically applied to evaluate a possibility of DDT in a IRWST compartment of APR1400 nuclear power plant during a hypothetical accident. A combustion model in an open source CFD code OpenFOAM has been applied for analyses of hydrogen flame propagation. The model was validated by evaluating the flame acceleration tests conducted in FLAME facility. And it was applied to evaluate the characteristics of a hydrogen flame propagation in the IRWST compartment of APR1400.

Comparison of the Stress Concentration Factors for GFRP Plate having Centered Circular Hole by Three Resource-Conserving Methods

  • Gao, Zhongchen;Park, Soo-Jeong;Kim, Yun-Hae
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.388-394
    • /
    • 2016
  • Fiber reinforced plastic (FRP) composites have drawn increasing attentions worldwide for decades due to its outstanding properties. Stress concentration factor (SCF) as an essential parameter in materials science are critically considered in structure design and application, strength assessment and failure prediction. However, investigation of stress concentration in FRP composites has been rarely reported so far. In this study, three resource-conserving analyses (Isotropic analysis, Orthotropic analysis and Finite element analysis) were introduced to plot the $K_T^A-d/W$ curve for E-glass/epoxy composite plate with the geometrical defect of circular hole placed centrally. The plates were loaded to uniaxial direction for simplification. Finite element analysis (FEA) was carried out via ACP (ANSYS composite prepost module). Based on the least squares method, a simple expression of fitting equation could be given based on the simulated results of a set of discrete points. Finally, all three achievable solutions were presented graphically for explicit comparison. In addition, the investigation into customized efficient SCFs has also been carried out for further reference.

Research for Distinctive Features of Geometry Problem Solving According to Achievement Level on Middle School Students (중학생의 성취수준에 따른 기하 문제해결의 특징 탐색)

  • Kim Ki-Yoen;Kim Sun-Hee
    • School Mathematics
    • /
    • v.8 no.2
    • /
    • pp.215-237
    • /
    • 2006
  • In this study, we research distinctive features of geometry problem solving of middle school students whose mathematical achievement levels are distinguished by National Assessment of Educational Achievement. We classified 9 students into 3 groups according to their level : advanced level, proficient level, basic level. They solved an atypical geometry problem while all their problem solving stages were observed and then analyzed in aspect of development of geometrical concepts and access to the route of problem solving. As those analyses, we gave some suggestions of teaching on mathematics as students' achievement level.

  • PDF

Design of the Thermally Conductive Mould to Improve Cooling Characteristics of Injection Mould for a Mouse (마우스 사출성형금형의 냉각 특성 향상을 위한 열전도성 금형 설계)

  • Ahn, Dong-Gyu;Kim, Hyun-Woo;Lee, Ki-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.3
    • /
    • pp.201-209
    • /
    • 2009
  • The objective of present research work is to design the heat conductive mould to improve cooling characteristics of the injection mould for a mouse. In order to obtain the high cooling rate of the mould, a heat conductive mould with three different materials was designed. The materials of the base structure, the mid-layer and the molding part of the heat conductive mould were chosen as Cu-Ni alloy (Ampcoloy 940) to improve the heat conductivity of the mould, Ni-Cu alloy (Monel 400) to reduce a thermal stress, injection tool steel (P21), respectively. Through the three-dimensional transient heat transfer analysis and the thermal stress analysis, the effects of the geometrical arrangement of each material on the cooling characteristics and the thermal stress distribution were examined. From the results of the analyses, a proper design of the thermal conductive mould was obtained.

Micro-Cracked Textile Composite Structures‘ Behavior on the Dynamic Impact Loading (동적 충격하중에 의한 미소균열 직조복합구조의 특성)

  • Hur, Hae-Kyu;Kim, Min-Sung;Jung, Jae-Kwon;Kim, Yong-Jin
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.222-227
    • /
    • 2008
  • This study is focused on an integrated numerical modeling enabling one to investigate the dynamic behavior and failure of 2-D textile composite and 3-D orthogonal woven composite structures weakened by micro-cracks and subjected to an impact load. The integrated numerical modeling is based on: I) determination of governing equations via a three-level hierarchy: micro-mechanical unit cell analysis, layer-wise analysis accounting for transverse strains and stresses, and structural analysis based on anisotropic plate layers, II) development of an efficient computational approach enabling one to perform transient response analyses of 2-D plain woven and 3-D orthogonal woven composite structures featuring the matrix cracking and exposed to time-dependent loads, III) determination of the structural characteristics of the textile-layered composites and their degraded features under various geometrical yarn shapes, and finally, IV) assessment of the implications of stiffness degradation on dynamic response to impact loads.

  • PDF

Residual Stress Estimation and Deformation Analysis for Injection Molded Plastic Parts using Three-Dimensional Solid Elements (3 차원 입체요소를 사용한 사출성형품의 잔류응력 예측 및 후변형 해석)

  • Park, Keun;Ahn, Jong-Ho;Yim, Chung-Hyuk
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.27 no.4
    • /
    • pp.507-514
    • /
    • 2003
  • Most of CAE analyses for injection molding have been based on the Mele Shaw's approximation: two-dimensional flow analysis. in some cases, that approximation causes significant errors due to loss of the geometrical information as well as simplification of the flow characteristics in the thickness direction. Although injection molding analysis software using three-dimensional solid elements has been developed recently, such as Moldflow Flow3D, it does not contain a deformation analysis function yet. The present work covers three-dimensional deformation analysis or injection molded plastic parts using solid elements. A numerical scheme for deformation analysis has bun proposed from the results of injection molding analysis using Moldflow Flow3D. The accuracy of the proposed approach has been verified through a numerical analysis of rectangular plates with various thicknesses in comparison with the classical shell-based approach. In addition, the reliability of the approach has also been proved through an industrial example. an optical plastic lens, in comparison of real experiments.

A Conceptual Data Model for a 3D Cadastre in Korea

  • Lee, Ji-Yeong;Koh, June-Hwan
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.25 no.6_1
    • /
    • pp.565-574
    • /
    • 2007
  • Because of most current cadastral systems maintain 2D geometric descriptions of parcels linked to administrative records, the system may not reflect current tendency to use space above and under the surface. The land has been used in multi-levels, e.g. constructions of multi-used complex buildings, subways and infrastructure above/under the ground. This cadastre situation of multilevel use of lands cannot be defined as cadastre objects (2D parcel-based) in the cadastre systems. This trend has requested a new system in which right to land is clearly and indisputably recorded because a right of ownership on a parcel relates to a space in 3D, not any more relates to 2D surface area. Therefore, this article proposes a 3D spatial data model to represent geometrical and topological data of 3D (property) situation on multilevel uses of lands in 3D cadastre systems, and a conceptual 3D cadastral model in Korea to design a conceptual schema for a 3D cadastre. Lastly, this paper presents the results of an experimental implementation of the 3D Cadastre to perform topological analyses based on 3D Network Data Model to identify spatial neighbors.

Prequalification of a set of buckling restrained braces: Part II - numerical simulations

  • Zub, Ciprian Ionut;Stratan, Aurel;Dubina, Dan
    • Steel and Composite Structures
    • /
    • v.34 no.4
    • /
    • pp.561-580
    • /
    • 2020
  • Buckling restrained braces (BRBs) were developed as an enhanced alternative to conventional braces by restraining their global buckling, thus allowing development of a stable quasi-symmetric hysteretic response. A wider adoption of buckling restrained braced frames is precluded due to proprietary character of most BRBs and the code requirement for experimental qualification. To overcome these problems, BRBs with capacities corresponding to typical steel multi-storey buildings in Romania were developed and experimentally tested in view of prequalification. In the second part of this paper, a complex nonlinear numerical model for the tested BRBs was developed in the finite element environment Abaqus. The calibration of the numerical model was performed at both component (material models: steel, concrete, unbonding material) and member levels (loading, geometrical imperfections). Geometrically and materially nonlinear analyses including imperfections were performed on buckling restrained braces models under cyclic loading. The calibrated models were further used to perform a parametric study aiming at assessing the influence of the strength of the buckling restraining mechanism, concrete class of the infill material, mechanical properties of steel used for the core, self-weight loading, and frame effect on the cyclic response of buckling restrained braces.

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.