• 제목/요약/키워드: geometric theory

검색결과 563건 처리시간 0.029초

3차원 삼각형 메쉬에 대한 기하학적 스내핑과 그의 응용 (Geometric Snapping for 3D Triangular Meshes and Its Applications)

  • 유관희;하종성
    • 한국정보과학회논문지:시스템및이론
    • /
    • 제31권3_4호
    • /
    • pp.239-246
    • /
    • 2004
  • 2차원 영상에 대한 이미지 스내핑(image snapping)이란 이미지 상에서 커서를 찍었을 때 그 커서를 이미지상의 에지와 같은 주요 특징을 나타내는 위치로 자연스럽게 옮기는 기능을 말한다. 본 논문에서는 이미지 스내핑 개념을 3차원 삼각형 메쉬로 확장한 기하학적 스내핑(geometric snapping)을 제시한다. 기하학적 스내핑이란 이미지 스내핑과 유사하게 사용자가 삼각형 메쉬상에서 선택한 위치가 주요 특징을 나타내는 위치로 자연스럽게 옮겨갈 수 있는 기능을 말한다. 커서의 움직임은 삼각형 메쉬상에 정의된 근사 곡률(approximate curvatures)을 기반으로 이루어진다. 제안된 기하학적 스내핑을 응용하여 3차원 삼각형 메쉬상에 나타나는 주요 특징을 찾을 수 있었고, 더욱이 치과 보철물 분야에서 교합면을 생성하는데 필수적인 치아의 기하학적 특징을 추출하는데 적용될 수 있음을 알았다.

SOME GEOMETRIC RESULTS ON A PARTICULAR SOLUTION OF EINSTEIN'S EQUATION

  • Lee, Jong Woo
    • Korean Journal of Mathematics
    • /
    • 제18권1호
    • /
    • pp.21-28
    • /
    • 2010
  • In the unified field theory(UFT), many works on the solutions of Einstein's equation have been published. The main goal in the present paper is to obtain some geometric results on a particular solution of Einstein's equation under some condition in even-dimensional UFT $X_n$.

On the Moving Average Models with Multivariate geometric Distributions

  • Baek, Jong-ill
    • Communications for Statistical Applications and Methods
    • /
    • 제6권3호
    • /
    • pp.677-686
    • /
    • 1999
  • In this paper we introduce a class of moving-average(MA) sequences of multivariate random vectors with geometric marginals. The theory of positive dependence is used to show that in various cases the class of MA sequences consists of associated random variables. We utilize positive dependence properties to obtain weakly probability inequality of the multivariate processes.

  • PDF

PFA의 기하 왜곡 보정 기법 (The Correcting Algorithm on Geometric Distortion of Polar Format Algorithm)

  • 이한길;김동환;손인혜
    • 한국군사과학기술학회지
    • /
    • 제21권1호
    • /
    • pp.17-24
    • /
    • 2018
  • Polar fomat algorithm (PFA) was derived from medical imaging theory, known as back projection, to process synthetic aperture radar(SAR) data. The difference between the operating condition of SAR and back projection assumption makes two distortions. First, the focusing performance of PFA is degraded in proportion to distances from the scene center. Second, the geometric accuracy in SAR images is distorted. Several methods were introduced to mitigate the distortions, but some disadvantages, such as the geometric discontinuity, are arisen when sub-images are combined. This paper proposes the novel method to compensate the geometric distortion with chirp Z-transform (CZT). This method corrects precisely the geometric errors without any problems, because a whole image can be processed all at once.

충격하중을 받는 원통의 최초좌굴시간의 변동성에 대한 기하학적 초기결함의 영향 (Influence of Geometric Initial Imperfection on the First Buckling Time Variation of Cylinder Under Impact Load)

  • 김두기
    • 전산구조공학
    • /
    • 제10권1호
    • /
    • pp.173-183
    • /
    • 1997
  • 본 논문에서는 랜덤한 축대칭 기하학적 초기결함을 갖는 원통이 축방향 충격하중을 받는 경우의 반경방향 변위가 임계기준치를 최초로 통과하는 확률론적 충격좌굴 파괴시간을 해석할 수 있는 방법을 제시하였다. 랜덤한 기하학적 초기결함의 생성을 위해 초기결함의 평균함수 및 상관함수를 이용하여 확률장을 형성하는 방법을 사용하였다. 본 논문에서 제시된 방법은 실제적인 기하학적 초기결함이 갖는 불확실성을 취급하는데 적절하고 실용적이므로 이를 고려한 원통의 구조안전도해석에 이용할 수 있다.

  • PDF

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF

기하학적 비선형성을 고려한 유체를 수송하는 반원관의 면내운동에 대한 진동 해석 (Vibration Analysis for the In-plane Motions of a Semi-Circular Pipe Conveying Fluid Considering the Geometric Nonlinearity)

  • 정진태;정두한
    • 대한기계학회논문집A
    • /
    • 제28권12호
    • /
    • pp.2012-2018
    • /
    • 2004
  • The vibration of a semi-circular pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized-$\alpha$ method. From these results, we should consider the geometric nonlinearity to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

기하학적 비선형성을 갖는 유체를 수송하는 곡선관의 진동 특성 (Vibration Characteristics of a Curved Pipe Conveying Fluid with the Geometric Nonlinearity)

  • 정두한;정진태
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 추계학술대회
    • /
    • pp.793-798
    • /
    • 2004
  • The vibration of a curved pipe conveying fluid is studied when the pipe is clamped at both ends. To consider the geometric nonlinearity, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the extended Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the vibration characteristics of the system, the discretized equations of motion are derived from the Galerkin method. The natural frequencies varying with the flow velocity are computed from the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. From these results, we should consider the geometric nonlinearity to analyze the dynamics of a curved pipe conveying fluid more precisely.

  • PDF

A new hierarchic degenerated shell element for geometrically non-linear analysis of composite laminated square and skew plates

  • Woo, Kwang-Sung;Park, Jin-Hwan;Hong, Chong-Hyun
    • Structural Engineering and Mechanics
    • /
    • 제17권6호
    • /
    • pp.751-766
    • /
    • 2004
  • This paper extends the use of the hierarchic degenerated shell element to geometric non-linear analysis of composite laminated skew plates by the p-version of the finite element method. For the geometric non-linear analysis, the total Lagrangian formulation is adopted with moderately large displacement and small strain being accounted for in the sense of von Karman hypothesis. The present model is based on equivalent-single layer laminate theory with the first order shear deformation including a shear correction factor of 5/6. The integrals of Legendre polynomials are used for shape functions with p-level varying from 1 to 10. A wide variety of linear and non-linear results obtained by the p-version finite element model are presented for the laminated skew plates as well as laminated square plates. A numerical analysis is made to illustrate the influence of the geometric non-linear effect on the transverse deflections and the stresses with respect to width/depth ratio (a/h), skew angle (${\beta}$), and stacking sequence of layers. The present results are in good agreement with the results in literatures.