• Title/Summary/Keyword: geometric problems

Search Result 471, Processing Time 0.023 seconds

A finite element algorithm for contact problems with friction

  • Liu, C.H.;Hofstetter, G.;Mang, H.A.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.289-297
    • /
    • 1995
  • A finite element algorithm for consideration of contact constraints is presented. It is characterized by introducing the geometric constraints, resulting from contact conditions, directly into the algebraic system of equations for the incremental displacements of an incremental iterative solution procedure. The usefulness of the proposed algorithm for efficient solutions of contact problems involving large displacements and large strains is demonstrated in the numerical investigation.

A Study on Problem Solving Related with Geometric Interpretation of Algebraic Expressions (대수식의 기하학적 해석을 통한 문제해결에 대한 연구)

  • Lyou, Ik-Seung;Han, In-Ki
    • Communications of Mathematical Education
    • /
    • v.25 no.2
    • /
    • pp.451-472
    • /
    • 2011
  • In this paper we studied problem solving related with geometric interpretation of algebraic expressions. We analyzed algebraic expressions, related these expressions with geometric interpretation. By using geometric interpretation we could find new approaches to solving mathematical problems. We suggested new problem solving methods related with geometric interpretation of algebraic expressions.

The Correcting Algorithm on Geometric Distortion of Polar Format Algorithm (PFA의 기하 왜곡 보정 기법)

  • Lee, Hankil;Kim, Donghwan;Son, Inhye
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.1
    • /
    • pp.17-24
    • /
    • 2018
  • Polar fomat algorithm (PFA) was derived from medical imaging theory, known as back projection, to process synthetic aperture radar(SAR) data. The difference between the operating condition of SAR and back projection assumption makes two distortions. First, the focusing performance of PFA is degraded in proportion to distances from the scene center. Second, the geometric accuracy in SAR images is distorted. Several methods were introduced to mitigate the distortions, but some disadvantages, such as the geometric discontinuity, are arisen when sub-images are combined. This paper proposes the novel method to compensate the geometric distortion with chirp Z-transform (CZT). This method corrects precisely the geometric errors without any problems, because a whole image can be processed all at once.

A study on the use of continuous spectrum in problem solving in a dynamic geometry environment (동적 기하 환경의 문제 해결 과정에서 연속 스펙트럼 활용에 대한 소고)

  • Heo, Nam Gu
    • The Mathematical Education
    • /
    • v.60 no.4
    • /
    • pp.543-554
    • /
    • 2021
  • The dynamic geometric environment plays a positive role in solving students' geometric problems. Students can infer invariance in change through dragging, and help solve geometric problems through the analysis method. In this study, the continuous spectrum of the dynamic geometric environment can be used to solve problems of students. The continuous spectrum can be used in the 'Understand the problem' of Polya(1957)'s problem solving stage. Visually representation using continuous spectrum allows students to immediately understand the problem. The continuous spectrum can be used in the 'Devise a plan' stage. Students can define a function and explore changes visually in function values in a continuous range through continuous spectrum. Students can guess the solution of the optimization problem based on the results of their visual exploration, guess common properties through exploration activities on solutions optimized in dynamic geometries, and establish problem solving strategies based on this hypothesis. The continuous spectrum can be used in the 'Review/Extend' stage. Students can check whether their solution is equal to the solution in question through a continuous spectrum. Through this, students can look back on their thinking process. In addition, the continuous spectrum can help students guess and justify the generalized nature of a given problem. Continuous spectrum are likely to help students problem solving, so it is necessary to apply and analysis of educational effects using continuous spectrum in students' geometric learning.

Examining Students' Conceptions about the Area of Geometric Figures (초등학교 학생들의 넓이 개념 이해도 조사 - 초등학교 6학년 학생들을 중심으로-)

  • Na, Gwisoo
    • Journal of Elementary Mathematics Education in Korea
    • /
    • v.16 no.3
    • /
    • pp.451-469
    • /
    • 2012
  • This research intends to examine how 6th graders (age 12) conceptualize the area of geometric figures. In this research, 4 problems were given to 122 students, which the 4 problems correspond to understanding area concept, finding the area of geometric figures-including rectangular, parallelogram, and triangle, writing the area formula for finding area of geometric figures, and explaining the reason why the area formula holds. As the results of the study, we identified that students revealed the most low achievement in the understanding area concept, and lower achievement in explaining the reason why the area formula holds, writing the area formula, finding the area of geometric figures in order. In based on the results, we suggested the didactical implication for improving the students' conception about the area of geometric figures.

  • PDF

A NEW FIFTH-ORDER WEIGHTED RUNGE-KUTTA ALGORITHM BASED ON HERONIAN MEAN FOR INITIAL VALUE PROBLEMS IN ORDINARY DIFFERENTIAL EQUATIONS

  • CHANDRU, M.;PONALAGUSAMY, R.;ALPHONSE, P.J.A.
    • Journal of applied mathematics & informatics
    • /
    • v.35 no.1_2
    • /
    • pp.191-204
    • /
    • 2017
  • A new fifth-order weighted Runge-Kutta algorithm based on heronian mean for solving initial value problem in ordinary differential equations is considered in this paper. Comparisons in terms of numerical accuracy and size of the stability region between new proposed Runge-Kutta(5,5) algorithm, Runge-Kutta (5,5) based on Harmonic Mean, Runge-Kutta(5,5) based on Contra Harmonic Mean and Runge-Kutta(5,5) based on Geometric Mean are carried out as well. The problems, methods and comparison criteria are specified very carefully. Numerical experiments show that the new algorithm performs better than other three methods in solving variety of initial value problems. The error analysis is discussed and stability polynomials and regions have also been presented.

EXTREMAL LENGTH AND GEOMETRIC INEQUALITIES

  • Chung, Bohyun
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.20 no.2
    • /
    • pp.147-156
    • /
    • 2007
  • We introduce the extremal length and examine its properties. And we consider the geometric applications of extremal length to the boundary behavior of analytic functions, conformal mappings. We derive the theorem in connection with the capacity. This theorem applies the extremal length to the analytic function defined on the domain with a number of holes. And we obtain the theorems in connection with the pure geometric problems.

  • PDF

SOME GEOMETRIC APPLICATIONS OF RESISTANT LENGTH OF CURVE FAMILIES (I)

  • Chung, Bohyun;Jung, Wansoo
    • Korean Journal of Mathematics
    • /
    • v.14 no.2
    • /
    • pp.281-289
    • /
    • 2006
  • We introduce the resistant length and examine its properties. We also consider the geometric applications of resistant length to the boundary behavior of analytic functions, conformal mappings and derive the theorem in connection with the cluster sets, purely geometric problems. The method of resistant length leads a simple proofs of theorems. So it shows us the usefulness of the method of resistant length.

  • PDF

A simplified geometric stiffness in stability analysis of thin-walled structures by the finite element method

  • Senjanovic, Ivo;Vladimir, Nikola;Cho, Dae-Seung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.4 no.3
    • /
    • pp.313-321
    • /
    • 2012
  • Vibration analysis of a thin-walled structure can be performed with a consistent mass matrix determined by the shape functions of all degrees of freedom (d.o.f.) used for construction of conventional stiffness matrix, or with a lumped mass matrix. In similar way stability of a structure can be analysed with consistent geometric stiffness matrix or geometric stiffness matrix with lumped buckling load, related only to the rotational d.o.f. Recently, the simplified mass matrix is constructed employing shape functions of in-plane displacements for plate deflection. In this paper the same approach is used for construction of simplified geometric stiffness matrix. Beam element, and triangular and rectangular plate element are considered. Application of the new geometric stiffness is illustrated in the case of simply supported beam and square plate. The same problems are solved with consistent and lumped geometric stiffness matrix, and the obtained results are compared with the analytical solution. Also, a combination of simplified and lumped geometric stiffness matrix is analysed in order to increase accuracy of stability analysis.

The new flat shell element DKMGQ-CR in linear and geometric nonlinear analysis

  • Zuohua Li;Jiafei Ning;Qingfei Shan;Hui Pan;Qitao Yang;Jun Teng
    • Computers and Concrete
    • /
    • v.31 no.3
    • /
    • pp.223-239
    • /
    • 2023
  • Geometric nonlinear performance simulation and analysis of complex modern buildings and industrial products require high-performance shell elements. Balancing multiple aspects of performance in the one geometric nonlinear analysis element remains challenging. We present a new shell element, flat shell DKMGQ-CR (Co-rotational Discrete Kirchhoff-Mindlin Generalized Conforming Quadrilateral), for linear and geometric nonlinear analysis of both thick and thin shells. The DKMGQ-CR shell element was developed by combining the advantages of high-performance membrane and plate elements in a unified coordinate system and introducing the co-rotational formulation to adapt to large deformation analysis. The effectiveness of linear and geometric nonlinear analysis by DKMGQ-CR is verified through the tests of several classical numerical benchmarks. The computational results show that the proposed new element adapts to mesh distortion and effectively alleviates shear and membrane locking problems in linear and geometric nonlinear analysis. Furthermore, the DKMGQ-CR demonstrates high performance in analyzing thick and thin shells. The proposed element DKMGQ-CR is expected to provide an accurate, efficient, and convenient tool for the geometric nonlinear analysis of shells.