• Title/Summary/Keyword: geometric model

Search Result 2,065, Processing Time 0.025 seconds

Numerical modelling of nonlinear behaviour of prestressed concrete continuous beams

  • Lou, Tiejiong;Lopes, Sergio M.R.;Lopes, Adelino V.
    • Computers and Concrete
    • /
    • v.15 no.3
    • /
    • pp.373-389
    • /
    • 2015
  • The development of a finite element model for the geometric and material nonlinear analysis of bonded prestressed concrete continuous beams is presented. The nonlinear geometric effect is introduced by the coupling of axial and flexural fields. A layered approach is applied so as to consider different material properties across the depth of a cross section. The proposed method of analysis is formulated based on the Euler-Bernoulli beam theory. According to the total Lagrangian description, the constructed stiffness matrix consists of three components, namely, the material stiffness matrix reflecting the nonlinear material effect, the geometric stiffness matrix reflecting the nonlinear geometric effect and the large displacement stiffness matrix reflecting the large displacement effect. The analysis is capable of predicting the nonlinear behaviour of bonded prestressed concrete continuous beams over the entire loading stage up to failure. Some numerical examples are presented to demonstrate the validity and applicability of the proposed model.

Nash equilibrium-based geometric pattern formation control for nonholonomic mobile robots

  • Lee, Seung-Mok;Kim, Hanguen;Lee, Serin;Myung, Hyun
    • Advances in robotics research
    • /
    • v.1 no.1
    • /
    • pp.41-59
    • /
    • 2014
  • This paper deals with the problem of steering a group of mobile robots along a reference path while maintaining a desired geometric formation. To solve this problem, the overall formation is decomposed into numerous geometric patterns composed of pairs of robots, and the state of the geometric patterns is defined. A control algorithm for the problem is proposed based on the Nash equilibrium strategies incorporating receding horizon control (RHC), also known as model predictive control (MPC). Each robot calculates a control input over a finite prediction horizon and transmits this control input to its neighbor. Considering the motion of the other robots in the prediction horizon, each robot calculates the optimal control strategy to achieve its goals: tracking a reference path and maintaining a desired formation. The performance of the proposed algorithm is validated using numerical simulations.

Nonlinear harmonic resonances of spinning graphene platelets reinforced metal foams cylindrical shell with initial geometric imperfections in thermal environment

  • Yi-Wen Zhang;Gui-Lin She
    • Structural Engineering and Mechanics
    • /
    • v.88 no.5
    • /
    • pp.405-417
    • /
    • 2023
  • This paper reveals theoretical research to the nonlinear dynamic response and initial geometric imperfections sensitivity of the spinning graphene platelets reinforced metal foams (GPLRMF) cylindrical shell under different boundary conditions in thermal environment. For the theoretical research, with the framework of von-Karman geometric nonlinearity, the GPLRMF cylindrical shell model which involves Coriolis acceleration and centrifugal acceleration caused by spinning motion is assumed to undergo large deformations. The coupled governing equations of motion are deduced using Euler-Lagrange principle and then solved by a combination of Galerkin's technique and modified Lindstedt Poincare (MLP) model. Furthermore, the impacts of a set of parameters including spinning velocity, initial geometric imperfections, temperature variation, weight fraction of GPLs, GPLs distribution pattern, porosity distribution pattern, porosity coefficient and external excitation amplitude on the nonlinear harmonic resonances of the spinning GPLRMF cylindrical shells are presented.

A Robust Pricing/Lot-sizing Model and A Solution Method Based on Geometric Programming

  • Lim, Sung-Mook
    • Management Science and Financial Engineering
    • /
    • v.14 no.2
    • /
    • pp.13-23
    • /
    • 2008
  • The pricing/lot-sizing problem of determining the robust optimal order quantity and selling price is discussed. The uncertainty of parameters characterized by an ellipsoid is explicitly incorporated into the problem. An approximation scheme is proposed to transform the problem into a geometric program, which can be efficiently and reliably solved using interior-point methods.

A RECURSIVE METHOD FOR DISCRETELY MONITORED GEOMETRIC ASIAN OPTION PRICES

  • Kim, Bara;Kim, Jeongsim;Kim, Jerim;Wee, In-Suk
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.3
    • /
    • pp.733-749
    • /
    • 2016
  • We aim to compute discretely monitored geometric Asian option prices under the Heston model. This method involves explicit formula for multivariate generalized Fourier transform of volatility process and their integrals over different time intervals using a recursive method. As numerical results, we illustrate efficiency and accuracy of our method. In addition, we simulate scenarios which show evidently practical importance of our work.

EMPIRICAL REALITIES FOR A MINIMAL DESCRIPTION RISKY ASSET MODEL. THE NEED FOR FRACTAL FEATURES

  • Christopher C.Heyde;Liu, S.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.5
    • /
    • pp.1047-1059
    • /
    • 2001
  • The classical Geometric Brownian motion (GBM) model for the price of a risky asset, from which the huge financial derivatives industry has developed, stipulates that the log returns are iid Gaussian. however, typical log returns data show a distribution with much higher peaks and heavier tails than the Gaussian as well as evidence of strong and persistent dependence. In this paper we describe a simple replacement for GBM, a fractal activity time Geometric Brownian motion (FATGBM) model based on fractal activity time which readily explains these observed features in the data. Consequences of the model are explained, and examples are given to illustrate how the self-similar scaling properties of the activity time check out in practice.

  • PDF

A Study on the 3-D CNC Cutting Planning and Simulation by Z-Map Model (Z-Map 모델을 이용한 3차원 CNC 가공계획 및 절삭시뮬레이션에 관한 연구)

  • 송수용;김석일
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1994.10a
    • /
    • pp.683-688
    • /
    • 1994
  • Recently, the Z-Map model has been used widely to represent the three dimensional geometric shape and to achieve the cross-section and point evaluation of the shape. In this paper, the CNC cutting planning and simulation modules for product with three dimensional geometric shape are realized based on the Z-Map model. The realized system has the various capabilities related to the automatic generation of tool path for the rough and finish cutting processes, the automatic elimination of overcut, the automatic generation of CNC program for a machining center and the cutting simulation. Especially, the overcut-free tool path is obtained by using the CL Z-Map models which are composed of the offset surfaces of the geometric shape of product.

  • PDF

Geometric Optimization Algorithm for Path Loss Model of Riparian Zone IoT Networks Based on Federated Learning Framework

  • Yu Geng;Tiecheng Song;Qiang Wang;Xiaoqin Song
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.7
    • /
    • pp.1774-1794
    • /
    • 2024
  • In the field of environmental sensing, it is necessary to develop radio planning techniques for the next generation Internet of Things (IoT) networks over mixed terrains. Such techniques are needed for smart remote monitoring of utility supplies, with links situated close to but out of range of cellular networks. In this paper, a three-dimension (3-D) geometric optimization algorithm is proposed, considering the positions of edge IoT devices and antenna coupling factors. Firstly, a multi-level single linkage (MLSL) iteration method, based on geometric objectives, is derived to evaluate the data rates over ISM 915 MHz channels, utilizing optimized power-distance profiles of continuous waves. Subsequently, a federated learning (FL) data selection algorithm is designed based on the 3-D geometric positions. Finally, a measurement example is taken in a meadow biome of the Mexican Colima district, which is prone to fluvial floods. The empirical path loss model has been enhanced, demonstrating the accuracy of the proposed optimization algorithm as well as the possibility of further prediction work.