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ON GEOMETRIC ERGODICITY OF AN AR-ARCH
TYPE PROCESS WITH MARKOV SWITCHING

OESOOK LEEf AND DONG WAN SHIN

ABSTRACT. We consider a nonlinear AR-ARCH type process sub-
ject to Markov-switching and give sufficient conditions for geometric
ergodicity of the process. Existence of moments is also obtained.

1. Introduction

The family of ARCH model, which was introduced by Engle [4] have
proven useful in financial applications and have attracted great attention
in economics and statistical literature (Tong [22], Bollerslev et al. [2],
Bougerol and Picard [3], Masry and Tjgstheim [18]), Li and Li [14], Ling
[15], Lee and Kim [10], Ling and McAleer [16]). Markov switching model,
in which a hidden Markov process governs the behavior of an observ-
able time series was first introduced by Hamilton [8] and gained much
attention in recent years (see, e.g, McCulloch and Tsay [19], Hamilton
[9], Yang [24], Yao and Attali [26], Francq and Zakoian [5], Yao [25],
Francq et al. [6], Zhang and Stine [27], Lee [11]). Given such models,
interests are the conditions under which a given model has probabilistic
properties such as strict stationarity, geometric ergodicity and existence
of higher order moments. Those properties are of great importance in
statistical inference for the time series models.

Let {U; : t > 0} be an irreducible, aperiodic Markov chain on a
finite state space F with stationary n-step transition probability matrix
pn) = (pgﬁ,))u,ve g. We consider a nonlinear AR-ARCH process with
Markov switching {y;} defined for integers ¢t > 1, by

(1.1) Yt = 91,0 (Wt—1, - - Ye—p) + 92,0, (Ys—1, - - -, Yt—q)€t
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where {e;} is an independent and identically distributed(iid) sequence
of random variables with mean zero and variance o2, and {g1 4 }uer and
{924 }uer are families of measurable functions on RP and R? respectively.

If E consists of only one point, equation (1.1) becomes the follow-
ing ARCH-related system which contains many of the nonlinear classes
discussed in the literature;

(1.2) Ve = g1(Yt—1,-- > Yt—p) + 92(ys-1, - -, Yt—g)et-

One of the special type of (1.2) is a double threshold AR-ARCH
model obtained by

. p .
w= oy + Z¢§J)yt—i +e, aj-1 <y < ay

i=1

(13) €& = \/h—t'eta

T
hy = a(()k) + Z aﬁ’“)e?_i, br—1 < €4-q < by
i=1
where j = 1,...,0h, k=1,...,ls, —o0o =ag < -~ < ap =00, —00 =
bp <+ < by = oo,¢§3),a§k) are constants with a(()k) > O,agk) >0(1<
i < r). Stationarity, geometric ergodicity and other probabilistic prop-
erties are studied for these models generated by (1.2) (or (1.3)) in Masry
and Tjpstheim [18], Li and Li [14], Liu et al. [17], Ling [15], Lee [13] etc.
In this paper, we deal with geometric ergodicity of a AR-ARCH type
process subject to Markov regime switching given by (1.1) and find
sufficient conditions under which the process is geometrically ergodic.
AR-ARCH model generated by (1.2) is also considered and geometric
ergodicity and existence of moments are studied.
Throughout this paper we assume, without loss of generality, that
p=q(p=1).
For terminologies and relevant results in Markov chain theory we refer
to Meyn and Tweedie [20].

2. Main results

Let {U; : t > 0} be an irreducible, aperiodic Markov chain on a
finite state space E with stationary n-step transition probability matrix

P = (pfﬁ,) Jupece. We consider a nonlinear AR-ARCH process with
Markov switching {y:} defined for integers t > 1, by

(24) yi=aq 0 Y-1,- > Yt—p) + 92,0, Y1, - - Yt—p)et-
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We assume that {e;} is iid with mean zero and variance o2 and {e;} and
{U;} are independent. Denote

(2.5) Y= (v, h—pt1), Wi=(Up,Ys).

Then W; is an aperiodic F x RP-valued Markov chain.

Recall that verification of geometric ergodicity of a Markov chain
{W;} proceeds by proving that the process is ¢-irreducible aperiodic
and by showing the existence of a test function satisfying the following
Foster-Lyapounov drift condition (see, e.g., Tjgstheim [21], Meyn and
Tweedie [20]):

DRIFT CONDITION: there exists a real valued measurable function
V' > 1 such that for some constants € > 0,0 < c < 00,0 < A< 1 and a
small set K,

ElV(W) | Wior =w] < AV(w) —e, z€ K°
and
ElVWy) | Wiy =uw]<e, ze€K.
We make the following assumptions.

AsSUMPTION I. (a) The iid random variables {e;} have a probability
density function f that is continuous and positive over R. (b) The

functions g1, and go, are nonperiodic and bounded on compact sets,
and gz ,(z) > 0forall z € RP, v € E.

Let p, denote the Lebesgue measure on the Borel o-field B(RP) of RP
and || - || be any vector norm on RP (p =1,2,...). For any function f,
let Eu[f(U)] = E[f(U)|Ut-1 = u].

AssuMpPTION II. For each w € E, there exist a;(u) > 0, d;(u) > 0
(i=1,...,p) such that for z = (21,...,2p),

(a) 191u(2>| DY 1az(u)|2zl + o(]|z]}) and
(b) g5 u(2) < 327 di(w)zf + o]|2]%).

THEOREM 2.1. Let the assumptions I and II hold. If
P P
(2.6) > _sup E[>  ai(Un)a;(Uy) + 02ds(Uy) | Uy = ] < 1,

then Wy is geometrically ergodic and Er, [v?] < oo where 7 is the unique
invariant distribution of Wy and m,(B) = w(E x B x RP™!), B € B(R).
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Proof. We first show that {W;} is v X p,-irreducible where v is a
counting measure on E and that every compact set is a small set.

For fixed uy, us,...,up, € = (Zp,...,21), 2= (2p,...,%1), define
h(z, z|ug, ..., up)
(2.7) = f(gillll(xp, s )21 — gru, (Tpy -, 21)))
Hf:2f(g2_’11“(zi_1,...,zl,a:p,...,:ci))
(zi — 910, (Zie1, oo, 21, Zpy - .+, Ti)).

Since the density function f is continuous and positive everywhere,
we have that if ;,(A) > 0 and C is a compact subset of RP, then

(2.8) / h(z, zlu1, ..., up)dpp(z) >0
A
and
(2.9) inf | h(z,zlus,...,up)duy(z) > 0.
zeC A

(see, for example, Bhattacharya and Lee [1], Lee [12])
For any E' C E, choose uq,...,us in F such that t > p, u; € E' and

Puouy *** Puy_yuy > 0.
Let Yi(us,...,ut) be Y; given Uy = uy,...,Up = u;.
Note that the following two equalities hold: for Wy = (ug, z),
(2.10) P(W; € E' x A|Wp)
Z Z Z Puguy " Pup_yuy P(Ya(ua, . .., up) € A|Wp)

w€E us_1€F ulEE
and

P(}’; ul, . Ut)EA‘Y; p—w)
(2.11) / h{w, z|ug—pt1,. .., u)dpp(2) > 0, Vw.

Combining (2.7)-(2.11), desired results follow.
Let n; = sup, E[B:i(U) + 02d;(Uy) | Ui—1 = u], where

P
= Z ai(u)a;(u)

Jj=1
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Choose § > 0 so that > 7, +J = 1. Now define a test function V :
E x RP - R by

p
(2.12) V(w,21,...,2) =Y %zt +1,

where 7, is any positive real number and ;41 = (1 —n — - —n; —
id/p), i=1,2,...,p—1. Then

) .
%+1+71?%S%(1—5), 1<i<p-1
1)
Y17p S'Yp(l_;)a

and hence we obtain that for z = (z1,..., %),
EV(Wy) | Wie1 = (u, 21, .-, 2p)]
b

= Elnlon (2) + g20,(2)er)* + > izl | Upor =] +1
z 2

NEWG: y,(2) + g3 v, (2 U]‘i‘Z% 1+l
i=2

%ZE [8:(Uy) + 02dy(Uy)) 25 +Z%Z .
=2
+’\/1E [RUt( )]+1
p

Y1 Z 77121‘ + 271212—1 + ’YIEU[RUt(Z)] +1
i=1 i=2

5 2
(1- 5) > vzl + mE[Ry (2)] + 1
i=1
6  nEu[Ry, ()] +4/p
213) £ V(u,z)(1——- ‘
213) € V)1 - o4 B
where Ry () = 20(|2I) (52, ai(w)|]) + (o(12I1))? + o2o(]12]1?). Since
every norm on RP is equivalent, E,[Ry,(2)]/V (u,z) — 0 as ||z]| — oo.
Therefore for any € > 0 we can choose p, 1 —6/p< p<land M < o0
so that the next two inequalities hold;

IN

IA

IA

IN

);

(2.14) EVIW)IWiy = (u,2)] < pV(u,2) —¢, iz > M

(2.15) sup E[V(W)[Wiz1 = (u, 2)] < 0.
llzlf<Af
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Geometric ergodicity of W; is obtained from (2.14) and (2.15) and finite-
ness of second-moment of y; can be derived from (2.12), (2.14) and The-

orem 2 of Tweedie [23]. O
THEOREM 2.2. In addition to the assumption I, we assume that for
each u € F, there exists 0 < A\, < 1 such that for z = (z1,...,2p),
(2.16) |91,u(2)] < Au max {|zi]} + o([|2]]) and
1<i<p
(2.17) g2.u(z) = o[ 2])-

Then the process given in (2.5) is geometrically ergodic.

Proof. Let A = sup, \,. Choose 1 > 0 arbitrary but fixed and take

Yigl = /\71’%-, i=1,2,...,p— 1. Define a test function Vi(:) on E x RP
to R by Vi(u, z) = maxi<i<p{vil|2:|} + 1. Then for any e > 0, there is
p < 1 such that

EWVi(W)[Wi_1 = (u, 21, - - ., 2p))

< Eylmax{ylgv, (2)], v2lz1l, .. . vpl2p-1(}]
+ MEulg2,v, (2)]Ele| + 1
< max{mAmax{|z|},y2lzl, ..., Wlzp-1l} + K(2)

< APVi(u,z) + K(2) — AF
(2.18) < pVi(u,2) —€, | z|| > M,
for some sufficiently large M; < co, where

K (z) = mo(llzll) + mo(llz|[) Eles| + 1.
Last inequality in (2.18) follows from the fact that K(z)/V1(u,z) — 0 as
l|2]] — oo. Since sup,<ar, E[Vi(W) | Wi—1 = (u, 2)] < oo, inequalities
in drift condition with V; as its test function are satisfied and geometric

ergodicity of Y; is obtained. O

COROLLARY 2.1. Suppose that the assumptions I and II(a) and equa-
tion (2.17) hold.

(1) If sup, % _; ai(u) < 1, the geometric ergodicity of W; follows.

(2) If 3°F_ sup, Elai(Uy)|Ui—1 = u] < 1, the geometric ergodicity of
W follows.

Proof. (1) Since

14
9| < S aiwlzl + o]
=1
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p
(2.19) < (O alw) max {la} + ().
=1 -

the conclusion follows from Theorem 2.2.

(2) Take a test function by V(z) = >_ vi|2;| where +; is the same as
defined in the proof of Theorem 2.1 with 7; = sup,, Ela;(Us)|Us—1 = u.
Then the remaining part of the proof is similar to that of Theorem 2.1
and is omitted. O

REMARK 1. Note that none of three conditions : inequality (2.6) in
Theorem 2.1 and two inequalities in Corollary 2.1 (1) and (2) is superior
than the other.

Now consider a nonlinear AR-ARCH type model given by

(2.20) Yo = g1(Y—1,- - Ye—p) + 92(Ye—1, .- -, Ye—p)et,
which is a special case of (2.4). Let

(2.21) Yi = (Uts Ye—15- - s Yt—pt1)-
For the case in (2.20), we give the following assumption:

AssumPTION III. There exist vectors (ai,...,ap), (di,...,dp) with
d; >0, (¢=1,...,p) such that for z = (21,...,2p),
(a) g1(2) = 271 aizi +o(||2]|) and

(b) g3(2) = 20y diz? + o([l2]%).

Masry and Tjgstheim [18] showed that under the assumptions I and
III, p(AA?) + maxi<i<pdi - 02 < 1 is sufficient for geometric ergodicity
of {Y;}, where

00 -+ 0 a
1 0 -+ 0 a
A= 01 --- 0 as
00 - 1 a

But p(AA") > 1 for p > 1.

THEOREM 2.3. Suppose that the assumptions I and III hold.

(1) If 0P |a)? + 023 1 di < 1, Y, is geometric ergodic and
Eﬂ'y [th] < 0.

(2) It Blef) = 0 and (1+30%) (X, i)+ (Elef] + 302) (T2, d)? <
1, then Y; is geometrically ergodic and Er [yf] < co.
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Proof. (1) If E has only one point, equation (2.4) becomes (2.20).
Results follow from the relation

P
Z(Z|aza]]+02d = Z|az| +022d
i=1 j=1

(2) Since Ele;] = Elej] = 0, we have that

E[(g1(2) + g2(2)er)"]
< (1+30%)gt + (Elef] + 30%)g3
P

(2.22) < (1+302)Zaizf+(E[ef]~|—3a2)i6iz§1+L(z),

i=1 i=1
where oy = Y51 BiBj, 6 = h- didj, Bi = Y¥_y |asaj], and L(z) =
(1+302)(4(Zaizi)30(||2|l)+6(Zaizz')2(0(|| 1) +4(Eazzz (=) +
(o(ll=I0)*) + (& [@1 + 30%)(2(X diz?)o(ll ] )+ (o(ll2]*))?). Note that

Y = (X lail)* and 356 = (3 di)®
Let 7; = (14 302)ai + (Elef] +302)8; and § =1—3_7; > 0. Choose

y1 > 0 arbitrary and y;49 = vi(1—m—---—m—id/p) (1 =1,...,p—1).
Now define
p
= nyizf—l—l.
i=1

Then we have
E[V3(Yy)|Yi-1 = 2]
P P
< Y _[(1+30%)ai + (Elef] +30%)8.]2f + Y wizty +1+mL(2).
=1 1=2

From assumption,
(1+ 30%) Z ai + (Elef] +30%) > 6

1+302)Z|a ) + (Elef] + 302) Zd)2<1
=1

Since L(z)/||z||* — 0 as ||z]] — oo, the remaining part of the proof is
the same as that of Theorem 2.1 and details are omitted. O

EXAMPLE. Suppose that the assumptions I and III hold and e; has
the standard normal distribution. Then (3 |a;|)?+>_ d; < 1 implies that
Y; is geometrically ergodic and Ey, [y7] < co. 4(2 lai)* +6(0.di)% < 1
ensures the finiteness of the fourth-moment of y; Er, [yf] < oo.
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REMARK 2. It is known that the geometric ergodicity of a Markov
chain implies the absolute regularity with a geometric convergence rate,
and absolute regularity is stronger than strong mixing. Therefore the
geometric ergodic process holds limiting theorems for absolutely regu-
lar process and/or strong mixing process. On the other hand, due to
Theorem 4.2 of Glynn and Meyn [7], we can conclude that under the
assumption of Theorem 2.1, if A2 < V + ¢ hold for some constant ¢, the
functional central limit theorem holds for h.
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