• 제목/요약/키워드: geometric instability

검색결과 63건 처리시간 0.025초

장애물이 부착된 평판사이유동의 수치해석적 연구 (Numerical Study of obstructed channel flow)

  • 황인상;양경수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2000년도 춘계학술대회논문집B
    • /
    • pp.783-788
    • /
    • 2000
  • Flow fields in two-dimensional plane channels with thin obstacles("baffles and blocks") mounted symmetrically in the vertical direction and periodically in the streamwise direction are studied numerically to understand how various geometric conditions influence the critical Reynolds number and pressure drop. Changing BR(the ratio of channel to baffle interval) from 1:1 to 1.5, we computed the critical Reynolds number and pressure drop. Especially when BR is 1:3, at which the critical Reynolds number turned out to be minimal, we added blocks in the geometry in order to study their destabiliting effects on the flows.

  • PDF

축방향 왕복운동을 하는 집중질량을 가진 외팔보의 비선형 동적 모델링 및 안정성 해석 (Nonlinear Dynamic Modeling and Stability Analysis of an Axially Oscillating Cantilever Beam With a Concentrated Mass)

  • 홍정환;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2003년도 춘계학술대회논문집
    • /
    • pp.477-482
    • /
    • 2003
  • A nonlinear modeling method for an axially oscillating cantilever beam with a concentrated mass is presented in this paper. Hybrid deformation variables are employed fur the modeling method with which frequency response characteristics of axially oscillating cantilever beams are investigated. The geometric nonlinear effects of stretching and curvature are considered to accurately predict the frequency response characteristics of the oscillating cantilever beam. The effects of the magnitude and the location on the concentrated mass on the frequency characteristics are investigated. It is found that the dynamic instability is significantly influenced by the two parameters.

  • PDF

기하학적 비선형을 고려한 핀접합 단층 래티스 돔의 불안정 거동에 관한 연구 (A Study on the Unstable Behavior of Pin-connected Single-layer Latticed Domes considering Geometric Nonlinearity)

  • 권택진;김승덕;김종민
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1997년도 봄 학술발표회 논문집
    • /
    • pp.240-247
    • /
    • 1997
  • Single-layer latticed domes, which ore consisted of slender linear elements, are able to transmit external loads to the structure by in-plane forces, therefore spatial structures can be constructed with the merit of its own lightweight. But, as external load reaches to any critical level at which each member has not material nonlinearity, the single-layer latticed dome shows unstable phenomenon. In particular, pin-connected single-layer latticed domes have much complicate unstable phenomena that are combined with nodal buckling and member buckling. Furthermore, single-layer latticed domes are very sensible to the initial imperfection which occurred inevitably in construction. In this study, we are going to grasp the characteristics of instability for the latticed dome by finite element method considering geometrical nonlinearity.

  • PDF

서울 서남권 돔 야구장의 Snapping 검토에 관한 연구 (A study of the Snapping investigations of Seoul Southwest Baseball Dome)

  • 김승덕;김남석
    • 한국공간구조학회논문집
    • /
    • 제10권4호
    • /
    • pp.133-140
    • /
    • 2010
  • 본 논문은 서남권 돔 야구장의 불안정 거동을 파악하고자 한다. 해석 대상 구조물의 설계하중과 이들의 조합 하중에 의한 하중모드에 대하여 구조물의 비선형 Snapping 현상을 조사하며, 초기 불완전성은 접선강성행렬의 고유치해석을 통해 좌굴 모드를 얻고 이를 비선형해석에 이용한다. 단 부재좌굴 또는 국부좌굴 등은 본 연구과제의 연구범위에 고려치 않으며, 전체좌굴 현상에 한정한다.

  • PDF

튜브 지지판 재배치에 따른 유체유발진동 특성 해석 (FIV Characteristics of U-Tubes Due to Relocation of the Tube Supprot Plates)

  • 김형진;유기완;박치용
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.312-317
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the PIAT (Program for Integrity Assessment of Steam Generator Tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-vibration bars such as vertical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

  • PDF

Auto-parametric resonance of framed structures under periodic excitations

  • Li, Yuchun;Gou, Hongliang;Zhang, Long;Chang, Chenyu
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.497-510
    • /
    • 2017
  • A framed structure may be composed of two sub-structures, which are linked by a hinged joint. One sub-structure is the primary system and the other is the secondary system. The primary system, which is subjected to the periodic external load, can give rise to an auto-parametric resonance of the second system. Considering the geometric-stiffness effect produced by the axially internal force, the element equation of motion is derived by the extended Hamilton's principle. The element equations are then assembled into the global non-homogeneous Mathieu-Hill equations. The Newmark's method is introduced to solve the time-history responses of the non-homogeneous Mathieu-Hill equations. The energy-growth exponent/coefficient (EGE/EGC) and a finite-time Lyapunov exponent (FLE) are proposed for determining the auto-parametric instability boundaries of the structural system. The auto-parametric instabilities are numerically analyzed for the two frames. The influence of relative stiffness between the primary and secondary systems on the auto-parametric instability boundaries is investigated. A phenomenon of the "auto-parametric internal resonance" (the auto-parametric resonance of the second system induced by a normal resonance of the primary system) is predicted through the two numerical examples. The risk of auto-parametric internal resonance is emphasized. An auto-parametric resonance experiment of a ${\Gamma}$-shaped frame is conducted for verifying the theoretical predictions and present calculation method.

튜브 지지판 재배치에 따른 유체유발진동 특성 해석 (FIV Analysis of SG Tubes for Various TSP Locations)

  • 김형진;박치용;박명호;유기완
    • 한국소음진동공학회논문집
    • /
    • 제15권9호
    • /
    • pp.1009-1015
    • /
    • 2005
  • Fluid-elastic instability and turbulence excitation for an under developing steam generator are investigated numerically. The stability ratio and the amplitude of turbulence excitation are obtained by using the $PIAT^{(R)}$ (program for integrity assessment of steam generator tube) code from the information on the thermal-hydraulic data of the steam generator. The aspect ratio, the ratio between the height of U-tube from the upper most tube support Plate (h) and the width of two vertical portion of U-tube (w), is defined for geometric parameter study. Several aspect ratios with relocation of tube support plates are adopted to study the effects on the mode shapes and characteristics of flow-induced vibration. When the aspect ratio exceeds value of 1, most of the mode shapes at low frequency are generated at the top of U-tube. It makes very high value of the stability ratio and the amplitude of turbulent excitation as well. We can consider that the local mode shape at the upper side of U-tube will develop the wear phenomena between the tube and the anti-nitration bars such as vortical, horizontal, and diagonal strips. It turns out that the aspect ratio reveals very important parameter for the design stage of the steam generator. The appropriate value of the aspect ratio should be specified and applied.

3D Numerical investigation of a rounded corner square cylinder for supercritical flows

  • Vishwanath, Nivedan;Saravanakumar, Aditya K.;Dwivedi, Kush;Murthy, Kalluri R.C.;Gurugubelli, Pardha S.;Rajasekharan, Sabareesh G.
    • Wind and Structures
    • /
    • 제35권1호
    • /
    • pp.55-66
    • /
    • 2022
  • Tall buildings are often subjected to steady and unsteady forces due to external wind flows. Measurement and mitigation of these forces becomes critical to structural design in engineering applications. Over the last few decades, many approaches such as modification of the external geometry of structures have been investigated to mitigate wind-induced load. One such proven geometric modification involved the rounding of sharp corners. In this work, we systematically analyze the impact of rounded corner radii on the reducing the flow-induced loading on a square cylinder. We perform 3-Dimensional (3D) simulations for high Reynolds number flows (Re=1 × 105) which are more likely to be encountered in practical applications. An Improved Delayed Detached Eddy Simulation (IDDES) method capable of capturing flow accurately at large Reynolds numbers is employed in this study. The IDDES formulation uses a k-ω Shear Stress Transport (SST) model for near-wall modelling that prevents mesh-induced separation of the boundary layer. The effects of these corner modifications are analyzed in terms of the resulting variations in the mean and fluctuating components of the aerodynamic forces compared to a square cylinder with no geometric changes. Plots of the angular distribution of the mean and fluctuating coefficient of pressure along the square cylinder's surface illustrate the effects of corner modifications on the different parts of the cylinder. The windward corner's separation angle was observed to decrease with an increase in radius, resulting in a narrower and longer recirculation region. Furthermore, with an increase in radius, a reduction in the fluctuating lift, mean drag, and fluctuating drag coefficients has been observed.

정상 샘플 이미지의 기하학적 변환을 사용한 이상 징후 검출 (Anomaly Detection using Geometric Transformation of Normal Sample Images)

  • 권용완;강동중
    • 한국인터넷방송통신학회논문지
    • /
    • 제22권4호
    • /
    • pp.157-163
    • /
    • 2022
  • 최근 산업 분야 자동화의 발전에 따라 이상 징후 검출에 대한 연구가 활발하게 진행 중이다. 공장 자동화에 사용되는 이상 징후 검출의 응용분야로 카메라를 사용한 결함 검사가 있다. 비전 카메라 검사는 공장 자동화에서 높은 성능과 효율성을 보이지만, 조명과 환경조건의 불안정성을 극복하기가 어렵다. 딥러닝을 이용한 카메라 검사가 훨씬 더 높은 성능을 보이면서 비전 카메라 검사의 문제를 해결할 수 있지만 학습을 위해 엄청난 양의 정상 데이터 및 비정상 데이터를 요구하기 때문에 실제 산업 분야에 적용하기가 어렵다. 따라서 본 연구는 정상 데이터만을 사용한 72개의 기하학적 변환 딥러닝 방법으로 비정상 데이터 수집 문제를 극복하고, 성능 개선을 위한 특이치 노출 방법을 추가한 네트워크를 제안한다. 이를 자동차 부품 데이터 및 이상치 검출용 데이터베이스인 MVTec 데이터 셋에 적용하고 검증함에 의해 실제 산업 현장에서 적용할 수 있음을 보인다.

실험계획법을 이용한 전륜 디스크 브레이크 시스템의 로터형상 스퀼소음 저감 최적화 (The Optimum Design of Rotor Shape in Front Disk Brake System for Squeal Noise Reduction using the DOE)

  • 이현영;조용구;아미누딘 빈 아부;이정윤;오재응
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 춘계학술대회논문집
    • /
    • pp.236-240
    • /
    • 2005
  • This paper deals with friction-induced vibration of disc brake system under constact friction coefficient. A linear, finite element model to represent the floating caliper disc brake system is proposed. The complex eigenvalues are used to investigate the dynamic stability and in order to verify simulations which are based on the FEM model, The comparison of experimental and analytical results shows a good agreement and the analysis indicates that mode coupling due to friction force and geometric instability is responsible fur disc brake squeal. And the Front brake system reduced the squeal noise using design of experiment method(DOE). This helped to validate the FEM model and establish confidence in the simulation results. Also they may be useful during real disk brake model.

  • PDF