• Title/Summary/Keyword: geometric impact

Search Result 154, Processing Time 0.039 seconds

Concentrations of PBDE Congeners in Breast Milk and Predictors of Exposure in Seoul Residents (서울 거주 산모 모유 중 PBDEs 이성질체 농도 및 노출 요인에 관한 연구)

  • We, Sung-Ug;Yoon, Cho-Hee;Min, Byung-Yoon
    • Journal of Environmental Health Sciences
    • /
    • v.37 no.6
    • /
    • pp.440-449
    • /
    • 2011
  • Objectives: This study was designed to determine the levels of polybrominated diphenyl ethers (PBDEs) in breast milk and to evaluate the relations with factors affecting these levels. Methods: The congener levels of PBDE in 22 samples of breast milk were analyzed using a high resolution gas chromatograph with a high resolution mass detector. In accordance with our standard operating procedures, the recoveries of internal standards had to range between 68% and 118%. Since the distribution of PBDE concentrations is close to log-normal, the data were logarithmically transformed before analysis. Test subjects were healthy primipara and multipara mothers with a mean age of 32 (SD = 2.7) in 2006. Results: Seven PBDE congeners (BDE-28, 47, 99, 100, 153, 154, and 183) were detected and identified in all of the pooled breast milk samples, indicating widespread contamination from PBDEs in the environment in Korea. Residue levels of total PBDEs (sum PBDEs from tri- to hepta-BDE) ranged from 0.84-13.1 ng/g lipid with median and geometric mean levels of 2.6 ng/g lipid and 2.74 ng/g lipid, respectively. PBDE congeners 47, 99 and 153 markedly predominated and accounted for about 75% of the amount of the PBDE congeners analyzed. BDE-47 was the dominant congener in most samples, whereas BDE-153 was predominant in a few (n = 7/22). BDE-47 was highly correlated with total PBDEs (r = 0.987, p < 0.01). In analyses of the differences of the means of log transformed breast milk PBDE levels for groups of potential covariates, only breast milk BDE-47 and BDE-99 levels were significantly associated with fish (p < 0.05) and meat consumption (p < 0.01). However, we did not find significant correlations between PBDE levels and maternal age, body mass index (BMI), parity, job presence and smoking status. Conclusions: Our findings are mainly limited due to the small sampling size and low doses of PBDEs exposure. Background and human exposure data of PBDEs is lacking, and longitudinal investigations into the environment and biota are encouraged to determine the health impact on future populations in Korea.

Study on the Dynamic Behavior Characteristics due to the Unbalance High Speed Railway Vehicle Wheel (고속철도차량용 차륜 불평형에 의한 동적 거동 특성 연구)

  • Lee, Seung-Yil;Song, Moon-Shuk
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.175-181
    • /
    • 2016
  • This occurs when the unbalanced rotating body is inconsistent with the mass center line axis geometric center line. Wheelsets are assembled by a single axle with two wheels and a rotating body of a running railway vehicle. Owing to non-uniformity of the wheel material, the wear, and error of the wheel and axle assembly may cause an imbalance. Wheelsets will suffer the effects of vibrations due to the unbalanced mass, which becomes more pronounced due to the thin and high-speed rotation compared to the shaft diameter This can affect the driving safety and the running behavior of a rail car during high-speed running. Therefore, this study examined this unbalanced wheel using a railway vehicle multibody dynamics analysis tool to assess the impact of the dynamic VI-Rail movement of high-speed railway vehicles. Increasing the extent of wheel imbalance on the analysis confirmed that the critical speed of a railway vehicle bogie is reduced and the high-speed traveling dropped below the vehicle dynamic behaviour. Therefore, the adverse effects of the amount of a wheel imbalance on travel highlight the need for management of wheel imbalances. In addition, the static and dynamic management needs of a wheel imbalance need to be presented to the national rail vehicles operating agency.

The study of a practical modeling method for the analysis of dynamic behavior by the mockup test of prestressed concrete girder (PSC I형 거더 실물 모형체 실험을 통한 동적거동특성 분석의 실용적 모델링 기법 연구)

  • Kim, Hyung-Kyu;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.148-156
    • /
    • 2018
  • The integrity assessment of the bridge behavior is generalized by field data of a static load-deformation curve and dynamic properties such as impact factors and natural frequencies. Evaluating it with numerical analysis is a reasonable method. The results of the mockup test and the numerical analysis are corresponded with each other since the behavior of service load proceeds in elastic region. In case of the dynamic behavior of structure, especially for the analysis of vibration, the result of the mockup test differs from the result of numerical analysis a little due to the geometric shape and non-homogeneous materials. In order to converge on these tolerances, this study suggested several numerical models, analyzed the sensitivity and finally offered a practical modeling method for the estimation of bridge on the basis of the result of mockup test. Based on the model substituted concrete section for strands section, the natural frequency of the model composed with axial stiffness of strands or the model applied the modified modulus of elasticity was closest with the result of the mockup test.

Scan Matching based De-skewing Algorithm for 2D Indoor PCD captured from Mobile Laser Scanning (스캔 매칭 기반 실내 2차원 PCD de-skewing 알고리즘)

  • Kang, Nam-woo;Sa, Se-Won;Ryu, Min Woo;Oh, Sangmin;Lee, Chanwoo;Cho, Hunhee;Park, Insung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.22 no.3
    • /
    • pp.40-51
    • /
    • 2021
  • MLS (Mobile Laser Scanning) which is a scanning method done by moving the LiDAR (Light Detection and Ranging) is widely employed to capture indoor PCD (Point Cloud Data) for floor plan generation in the AEC (Architecture, Engineering, and Construction) industry. The movement and rotation of LiDAR in the scanning phase cause deformation (i.e. skew) of PCD and impose a significant impact on quality of output. Thus, a de-skewing method is required to increase the accuracy of geometric representation. De-skewing methods which use position and pose information of LiDAR collected by IMU (Inertial Measurement Unit) have been mainly developed to refine the PCD. However, the existing methods have limitations on de-skewing PCD without IMU. In this study, a novel algorithm for de-skewing 2D PCD captured from MLS without IMU is presented. The algorithm de-skews PCD using scan matching between points captured from adjacent scan positions. Based on the comparison of the deskewed floor plan with the benchmark derived from TLS (Terrestrial Laser Scanning), the performance of proposed algorithm is verified by reducing the average mismatched area 49.82%. The result of this study shows that the accurate floor plan is generated by the de-skewing algorithm without IMU.

A Study on the Speed Change on the Arterial Road according to Traffic Volume and Speed Limit (교통량과 제한속도에 따른 간선도로 속도 변화에 관한 연구)

  • Shin, Eon-kyo;Kim, Ju-hyun
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.5
    • /
    • pp.149-161
    • /
    • 2022
  • Because the speed limit affects moving speed, it is closely related to traffic accidents as well as traffic flow. The existing speed limit calculation methods consider various engineering factors such as lanes, intersection spacing, driveways, crosswalks, 85 percentile speed, land uses, and roadway geometric characteristics etc. However, it can be said that the engineering analysis is insufficient because the traffic impact analysis considering traffic volume is not carried out. In addition, only 85 percentile speed, which is the spot speed, does not reflect the characteristics of the traffic flow on the road. In this paper, the effect of the speed limit change on the moving speed and the travel speed was analyzed in detail accordinr to the variation of intersection spacing and traffic volume. And by using the results, we proposed a speed limit calculation method that maintains the same service level as before the speed limit change, thereby increasing the speed improvement effect and reducing the difference between moving speed and travel speed. In addition, a variable speed limit operation method according to the change in traffic volume was also suggested. This method is expected to be effective in terms of safety by reducing the speed difference, which affects the severity of traffic accidents, while securing the speed improvement effect, and increasing the speed limit compliance rate of drivers by operating the speed limit that reflects the speed change due to the variation of traffic volume.

Studying the Comparative Analysis of Highway Traffic Accident Severity Using the Random Forest Method. (Random Forest를 활용한 고속도로 교통사고 심각도 비교분석에 관한 연구)

  • Sun-min Lee;Byoung-Jo Yoon;WutYeeLwin
    • Journal of the Society of Disaster Information
    • /
    • v.20 no.1
    • /
    • pp.156-168
    • /
    • 2024
  • Purpose: The trend of highway traffic accidents shows a repeating pattern of increase and decrease, with the fatality rate being highest on highways among all road types. Therefore, there is a need to establish improvement measures that reflect the situation within the country. Method: We conducted accident severity analysis using Random Forest on data from accidents occurring on 10 specific routes with high accident rates among national highways from 2019 to 2021. Factors influencing accident severity were identified. Result: The analysis, conducted using the SHAP package to determine the top 10 variable importance, revealed that among highway traffic accidents, the variables with a significant impact on accident severity are the age of the perpetrator being between 20 and less than 39 years, the time period being daytime (06:00-18:00), occurrence on weekends (Sat-Sun), seasons being summer and winter, violation of traffic regulations (failure to comply with safe driving), road type being a tunnel, geometric structure having a high number of lanes and a high speed limit. We identified a total of 10 independent variables that showed a positive correlation with highway traffic accident severity. Conclusion: As accidents on highways occur due to the complex interaction of various factors, predicting accidents poses significant challenges. However, utilizing the results obtained from this study, there is a need for in-depth analysis of the factors influencing the severity of highway traffic accidents. Efforts should be made to establish efficient and rational response measures based on the findings of this research.

The Contact and Parallel Analysis of Smoothed Particle Hydrodynamics (SPH) Using Polyhedral Domain Decomposition (다면체영역분할을 이용한 SPH의 충돌 및 병렬해석)

  • Moonho Tak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.4
    • /
    • pp.21-28
    • /
    • 2024
  • In this study, a polyhedral domain decomposition method for Smoothed Particle Hydrodynamics (SPH) analysis is introduced. SPH which is one of meshless methods is a numerical analysis method for fluid flow simulation. It can be useful for analyzing fluidic soil or fluid-structure interaction problems. SPH is a particle-based method, where increased particle count generally improves accuracy but diminishes numerical efficiency. To enhance numerical efficiency, parallel processing algorithms are commonly employed with the Cartesian coordinate-based domain decomposition method. However, for parallel analysis of complex geometric shapes or fluidic problems under dynamic boundary conditions, the Cartesian coordinate-based domain decomposition method may not be suitable. The introduced polyhedral domain decomposition technique offers advantages in enhancing parallel efficiency in such problems. It allows partitioning into various forms of 3D polyhedral elements to better fit the problem. Physical properties of SPH particles are calculated using information from neighboring particles within the smoothing length. Methods for sharing particle information physically separable at partitioning and sharing information at cross-points where parallel efficiency might diminish are presented. Through numerical analysis examples, the proposed method's parallel efficiency approached 95% for up to 12 cores. However, as the number of cores is increased, parallel efficiency is decreased due to increased information sharing among cores.

Manganese and Iron Interaction: a Mechanism of Manganese-Induced Parkinsonism

  • Zheng, Wei
    • Proceedings of the Korea Environmental Mutagen Society Conference
    • /
    • 2003.10a
    • /
    • pp.34-63
    • /
    • 2003
  • Occupational and environmental exposure to manganese continue to represent a realistic public health problem in both developed and developing countries. Increased utility of MMT as a replacement for lead in gasoline creates a new source of environmental exposure to manganese. It is, therefore, imperative that further attention be directed at molecular neurotoxicology of manganese. A Need for a more complete understanding of manganese functions both in health and disease, and for a better defined role of manganese in iron metabolism is well substantiated. The in-depth studies in this area should provide novel information on the potential public health risk associated with manganese exposure. It will also explore novel mechanism(s) of manganese-induced neurotoxicity from the angle of Mn-Fe interaction at both systemic and cellular levels. More importantly, the result of these studies will offer clues to the etiology of IPD and its associated abnormal iron and energy metabolism. To achieve these goals, however, a number of outstanding questions remain to be resolved. First, one must understand what species of manganese in the biological matrices plays critical role in the induction of neurotoxicity, Mn(II) or Mn(III)? In our own studies with aconitase, Cpx-I, and Cpx-II, manganese was added to the buffers as the divalent salt, i.e., $MnCl_2$. While it is quite reasonable to suggest that the effect on aconitase and/or Cpx-I activites was associated with the divalent species of manganese, the experimental design does not preclude the possibility that a manganese species of higher oxidation state, such as Mn(III), is required for the induction of these effects. The ionic radius of Mn(III) is 65 ppm, which is similar to the ionic size to Fe(III) (65 ppm at the high spin state) in aconitase (Nieboer and Fletcher, 1996; Sneed et al., 1953). Thus it is plausible that the higher oxidation state of manganese optimally fits into the geometric space of aconitase, serving as the active species in this enzymatic reaction. In the current literature, most of the studies on manganese toxicity have used Mn(II) as $MnCl_2$ rather than Mn(III). The obvious advantage of Mn(II) is its good water solubility, which allows effortless preparation in either in vivo or in vitro investigation, whereas almost all of the Mn(III) salt products on the comparison between two valent manganese species nearly infeasible. Thus a more intimate collaboration with physiochemists to develop a better way to study Mn(III) species in biological matrices is pressingly needed. Second, In spite of the special affinity of manganese for mitochondria and its similar chemical properties to iron, there is a sound reason to postulate that manganese may act as an iron surrogate in certain iron-requiring enzymes. It is, therefore, imperative to design the physiochemical studies to determine whether manganese can indeed exchange with iron in proteins, and to understand how manganese interacts with tertiary structure of proteins. The studies on binding properties (such as affinity constant, dissociation parameter, etc.) of manganese and iron to key enzymes associated with iron and energy regulation would add additional information to our knowledge of Mn-Fe neurotoxicity. Third, manganese exposure, either in vivo or in vitro, promotes cellular overload of iron. It is still unclear, however, how exactly manganese interacts with cellular iron regulatory processes and what is the mechanism underlying this cellular iron overload. As discussed above, the binding of IRP-I to TfR mRNA leads to the expression of TfR, thereby increasing cellular iron uptake. The sequence encoding TfR mRNA, in particular IRE fragments, has been well-documented in literature. It is therefore possible to use molecular technique to elaborate whether manganese cytotoxicity influences the mRNA expression of iron regulatory proteins and how manganese exposure alters the binding activity of IPRs to TfR mRNA. Finally, the current manganese investigation has largely focused on the issues ranging from disposition/toxicity study to the characterization of clinical symptoms. Much less has been done regarding the risk assessment of environmenta/occupational exposure. One of the unsolved, pressing puzzles is the lack of reliable biomarker(s) for manganese-induced neurologic lesions in long-term, low-level exposure situation. Lack of such a diagnostic means renders it impossible to assess the human health risk and long-term social impact associated with potentially elevated manganese in environment. The biochemical interaction between manganese and iron, particularly the ensuing subtle changes of certain relevant proteins, provides the opportunity to identify and develop such a specific biomarker for manganese-induced neuronal damage. By learning the molecular mechanism of cytotoxicity, one will be able to find a better way for prediction and treatment of manganese-initiated neurodegenerative diseases.

  • PDF

Development of a Climate Change Vulnerability Index on the Health Care Sector (기후변화 건강 취약성 평가지표 개발)

  • Shin, Hosung;Lee, Suehyung
    • Journal of Environmental Policy
    • /
    • v.13 no.1
    • /
    • pp.69-93
    • /
    • 2014
  • The aim of this research was to develop a climate change vulnerability index at the district level (Si, Gun, Gu) with respect to the health care sector in Korea. The climate change vulnerability index was esimated based on the four major causes of climate-related illnesses : vector, flood, heat waves, and air pollution/allergies. The vulnerability assessment framework consists of six layers, all of which are based on the IPCC vulnerability concepts (exposure, sensitivity, and adaptive capacity) and the pathway of direct and indirect impacts of climate change modulators on health. We collected proxy variables based on the conceptual framework of climate change vulnerability. Data were standardized using the min-max normalization method. We applied the analytic hierarchy process (AHP) weight and aggregated the variables using the non-compensatory multi-criteria approach. To verify the index, sensitivity analysis was conducted by using another aggregation method (geometric transformation method, which was applied to the index of multiple deprivation in the UK) and weight, calculated by the Budget Allocation method. The results showed that it would be possible to identify the vulnerable areas by applying the developed climate change vulnerability assessment index. The climate change vulnerability index could then be used as a valuable tool in setting climate change adaptation policies in the health care sector.

  • PDF

DEVELOPMENT OF SAFETY-BASED LEVEL-OF-SERVICE CRITERIA FOR ISOLATED SIGNALIZED INTERSECTIONS (독립신호 교차로에서의 교통안전을 위한 서비스수준 결정방법의 개발)

  • Dr. Tae-Jun Ha
    • Proceedings of the KOR-KST Conference
    • /
    • 1995.02a
    • /
    • pp.3-32
    • /
    • 1995
  • The Highway Capacity Manual specifies procedures for evaluating intersection performance in terms of delay per vehicle. What is lacking in the current methodology is a comparable quantitative procedure for ass~ssing the safety-based level of service provided to motorists. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections based on the relative hazard of alternative intersection designs and signal timing plans. Conflict opportunity models were developed for those crossing, diverging, and stopping maneuvers which are associated with left-turn and rear-end accidents. Safety¬based level-of-service criteria were then developed based on the distribution of conflict opportunities computed from the developed models. A case study evaluation of the level of service analysis methodology revealed that the developed safety-based criteria were not as sensitive to changes in prevailing traffic, roadway, and signal timing conditions as the traditional delay-based measure. However, the methodology did permit a quantitative assessment of the trade-off between delay reduction and safety improvement. The Highway Capacity Manual (HCM) specifies procedures for evaluating intersection performance in terms of a wide variety of prevailing conditions such as traffic composition, intersection geometry, traffic volumes, and signal timing (1). At the present time, however, performance is only measured in terms of delay per vehicle. This is a parameter which is widely accepted as a meaningful and useful indicator of the efficiency with which an intersection is serving traffic needs. What is lacking in the current methodology is a comparable quantitative procedure for assessing the safety-based level of service provided to motorists. For example, it is well¬known that the change from permissive to protected left-turn phasing can reduce left-turn accident frequency. However, the HCM only permits a quantitative assessment of the impact of this alternative phasing arrangement on vehicle delay. It is left to the engineer or planner to subjectively judge the level of safety benefits, and to evaluate the trade-off between the efficiency and safety consequences of the alternative phasing plans. Numerous examples of other geometric design and signal timing improvements could also be given. At present, the principal methods available to the practitioner for evaluating the relative safety at signalized intersections are: a) the application of engineering judgement, b) accident analyses, and c) traffic conflicts analysis. Reliance on engineering judgement has obvious limitations, especially when placed in the context of the elaborate HCM procedures for calculating delay. Accident analyses generally require some type of before-after comparison, either for the case study intersection or for a large set of similar intersections. In e.ither situation, there are problems associated with compensating for regression-to-the-mean phenomena (2), as well as obtaining an adequate sample size. Research has also pointed to potential bias caused by the way in which exposure to accidents is measured (3, 4). Because of the problems associated with traditional accident analyses, some have promoted the use of tqe traffic conflicts technique (5). However, this procedure also has shortcomings in that it.requires extensive field data collection and trained observers to identify the different types of conflicts occurring in the field. The objective of the research described herein was to develop a computational procedure for evaluating the safety-based level of service of signalized intersections that would be compatible and consistent with that presently found in the HCM for evaluating efficiency-based level of service as measured by delay per vehicle (6). The intent was not to develop a new set of accident prediction models, but to design a methodology to quantitatively predict the relative hazard of alternative intersection designs and signal timing plans.

  • PDF