• Title/Summary/Keyword: geological mapping

Search Result 178, Processing Time 0.021 seconds

Case Study on the Tunnel Collapses during the Construction and Application of Geotechnical Investigation (터널 시공 중 지반 관련 사고 사례의 원인 분석과 지반 조사 결과의 활용에 관한 검토)

  • Park, Nam-Seo;Lee, Chi-Mun;Gang, Sang-Ho
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.47-60
    • /
    • 1998
  • It is considered in this paper that the main causes of tunnel collapse during the construction were the insufficiency of data of geotechnical investigations, or their limits due to special ground condition such as its heterogeneity and anisotropy It is thought that safety of ground can be affected by the geological conditions such as presences of discontinuities in good intact rocks, and considered to be necessary that awareness of the conditions of discontinuities in advance is important to apply adequate reinforcement measures. It is also shown that a serious accident had occurred because of the unawareness of the permeable alluvial deposits at the top of the tunnel. And it is shown that the example of application of the results of geotechnical investigation such as face-mapping, pilot boring etc. during tunnel construction, and a serious deformation of tunnel under special geological condition. Therefore, it is strongly recommended to perform an adequate geotechnical investigation to confirm the geotechnical conditons of ground before design, and supplimentary investigation is also needed depending on conditions for safe and econonic construction.

  • PDF

Basic Concepts and Geological Applications of LiDAR (LiDAR 기법의 기본원리와 지질학적 적용)

  • Kim, Hyun-Tae;Kim, Young-Seog;We, Kwang-Jae
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.123-135
    • /
    • 2014
  • Earthquakes can cause serious loss of life and significant property damage. Thus, the study of active faults is important in evaluating future fault activity and hazards caused by future earthquake events. Structural mapping and the tracing of active faults are the primary steps in studies of active faults. Until now, active faults in South Korea have been mapped using aerial photography, satellite images, and low-quality DEMs. Lineament analysis as a means of identifying active faults is relatively difficult in Korea due to geological characteristics (weak tectonic activity) and dense vegetation cover. In this paper, we introduce the basic concept of the LiDAR technique (a new prospective remote sensing method) and a data analysis method that can overcome these problems. This paper will contribute to a better understanding of the airborne LiDAR technique and its application to South Korea. Some preliminary results from Korean and USA LiDAR data show the usefulness of this technique for tracing lineaments, active faults, and terraces in South Korea.

Use of the Tunnel Seismic Prediction Method for Construction of Spillways at Juam Dam (터널 내 탄성파탐사(TSP)기법의 주암댐 보조여수로 적용 사례 연구)

  • Bae, Jongsoem;Chang, Chandong
    • The Journal of Engineering Geology
    • /
    • v.23 no.1
    • /
    • pp.67-77
    • /
    • 2013
  • We conducted a Tunnel Seismic Prediction (TSP) survey in a spillway tunnel at Juam Dam to predict the locations of major discontinuities ahead of the tunnel face. We compared the results of the TSP survey with those from pre-construction inspections (including a surface resistivity survey and borehole investigations) as well as with direct tunnel-face mapping during excavation. The TSP method predicted the locations of major fracture zones that were unnoticed in the pre-construction inspections. The reinforcement patterns planned on the basis of pre-construction inspections were changed on the basis of the TSP results. The results demonstrate that TSP surveys are a cost-effective and reliably accurate method of predicting the locations of fracture zones. Although the TSP method has some limitations, these results suggest that the method is generally useful for predicting geological conditions prior to tunnel face construction.

Geochemical baseline mapping for geochemical hazard assessment (지구화학적 재해 평가를 위한 지화학도 작성 및 기준치 설정)

  • 신성천;염승준;황상기
    • The Journal of Engineering Geology
    • /
    • v.10 no.2
    • /
    • pp.215-233
    • /
    • 2000
  • The national geochemical baseline mapping project has been conducted since 1996 to establish a quantitative assessment system for geochemical hazards in natural environments. The geochemical image maps have been edited for thirty-six elements(i.e., 10 major oxides and 26 trace elements) in light sediments, finer fraction than 150 $\mu$m, collected from first- to second-order streams(totally 11,000) over five provinces in the western half(ca. 45,000 km$^2$) of Korea. Natural background values of the elements were given for different geological environments. Based on the statistics, geochemical baselines were newly obtained for a quantitative hazard assessment on toxicity of heavy metals and deficiency of essential nutrients. Some chosen examples of geochemical hazards are presented based on new geochemical image maps and related baseline data.

  • PDF

Surface Geophysical Survey for Delineation of Weathered Zone of Chojeong Area and Investigation of Fault Fracture Zones (초정지역의 풍화대 조사 및 단층파쇄 지역의 불연속면 조사를 위한 지표물리탐사)

  • Kim, Ji-Soo;Han, Soo-Hyung
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.517-523
    • /
    • 2007
  • Geophysical surveys(seismic refraction, electrical resistivity, and ground penetrating radar) were performed to delineate the weathering zone associated with vadose water in Chojeong area and investigate the fault related fracture zones. On the basis of seismic velocity structures, weathering layer for the southwestern part is interpreted to be deeper than for the northeastern part. The depth to bedrock(i.e., thickness of weathered zone) from seismic refraction data attempted to be correlated with drill-core data and groundwater level. As for the investigation of geological discontinuities such as fault related fracture zone, seismic refraction, electrical resistivity, and ground penetrating data are compositely employed in terms of velocity and resistivity structures for mapping of surface boundary of the discontinuities up to shallow depth. Surface boundaries of fracture zone are well indicated in seismic velocity and electrical resistivity structures. Accurate estimation of weathered zone and fracture zone can be successfully available for mapping of attitude of vadose water layer.

The History of Volcanic Hazard Map (화산위험지도의 역사)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Ewert, John W.
    • The Journal of the Petrological Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.49-66
    • /
    • 2018
  • Volcano hazard mapping became a focus of scientific inquiry in the 1960s. Dwight Crandell and Don Mullineaux pioneered the geologic history approach with the concept of the past is the key to the future, to hazard mapping. The 1978 publication of the Mount St. Helens hazards assessment and forecast of an eruption in the near future, followed by the large eruption in 1980 demonstrated the utility of volcano hazards assessments and triggered huge growth in this area of volcano science. Numerical models of hazardous processes began to be developed and used for identifying hazardous areas in 1980s and have proliferated since the late 1990s. Model outputs are most useful and accurate when they are constrained by geological knowledge of the volcano. Volcanic Hazard maps can be broadly categorized into those that portray long-term unconditional volcanic hazards-maps showing all areas with some degree of hazard and those that are developed during an unrest or eruption crisis and take into account current monitoring, observation, and forecast information.

A Case Study of Minimizing Construction Time in Long and Large Twin Tube Tunnel (대단면 장대터널 공기단축 사례연구)

  • No Sang-Lim;Noh Seung-Hwan;Lee Sang-Pil;Kim Moon-Ho;Seo Jung-Woo
    • Tunnel and Underground Space
    • /
    • v.15 no.3 s.56
    • /
    • pp.177-184
    • /
    • 2005
  • The Sapaesan tunnel, the longest twin tube tunnel (4km) in Korea with 4 lanes each, is under construction with two years of delayed schedule because of the strong opposition from environmental bodies. Therefore, maximizing the construction efficiency was needed in tunnel project to compensate for time delay. This study includes improvements in the construction of the Sapaesan tunnel such as increasing excavation length and changing excavation sequence. In this paper the system for predicting tunnel face ahead is also introduced. Bulk-Emulsion explosive and Cylinder-Cut method were adopted in tunnel blasting to increase the excavation length. Optimum tunnel excavation step was designed to make up delayed time. Tunnel foe mapping, TSP survey and geological prediction system using computerized jumbo-drill were performed fnr safe construction of long and large twin tube tunnel.

Feasibility Mapping of Groundwater Yield Characteristics using Weight of Evidence Technique based on GIS in the Pocheon Area (GIS 기반 Weight of Evidence 기법을 이용한 포천 지역의 지하수 산출특성 예측도 작성)

  • Heo Seon-Hee;Lee Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.21 no.6
    • /
    • pp.493-503
    • /
    • 2005
  • In this study, the weight of evidence(WofE) technique based on GIS was applied to spatially estimate the groundwater yield characteristics at the Pocheon area In Gyunggi-do. The groundwater preservation depends on many hydro-geologic factors that include hydrologic data, land-use data, topographic data, geological map and other natural materials collected at the site, even with man-made things. All these data can be digitally processed and managed by GIS database. In the applied technique of WofE, the prior probabilities were estimated as the factors that affect the yield on lineament, geology, drainage pattern or river system density, landuse and soil. We calculated the value of the weight values, W+ and W-, of each factor and estimated the contrast value of it. Results by the groundwater yield characteristic computation using this scheme were presented feasibility map in the form of the posterior probability to the consideration of in-situ samples. It is concluded that this technique is regarded as one of the effective techniques for the feasibility mapping related to the estimation of groundwater-bearing potential zones and its spatial pattern.

The Magnetic Anomaly Map of Korea (한국의 자력 이상도)

  • Park, Yeong-Sue;Rim, Hyoungrea;Lim, Mutaek;Shin, Young Hong
    • Geophysics and Geophysical Exploration
    • /
    • v.22 no.1
    • /
    • pp.29-36
    • /
    • 2019
  • Regional airborne magnetic survey is very cost-effective mapping tool. Magnetic anomaly maps have abundant information, which are an important tool for understanding the geological evolution and mineral exploration. For this reason, the governments of many countries have made significant investment in the acquisition of airborne geophysical data over many decades. KIGAM (Korea Institute of Geoscience and Mineral Resources) began nationwide airborne magnetic mapping programme in 1982, and completed in 2017. The obtained magnetic data was reprocessed and magnetic database was built in 2018. In addition, the magnetic anomaly map of Korea with a scale of 1:1,000,000 was published. In this paper, we introduced a new magnetic anomaly map of Korea through describing the changing survey parameters during data acquisitions and history of data processing.

The radiation shielding proficiency and hyperspectral-based spatial distribution of lateritic terrain mapping in Irikkur block, Kannur, Kerala

  • S. Arivazhagan;K.A. Naseer;K.A. Mahmoud;N.K. Libeesh;K.V. Arun Kumar;K.ChV. Naga Kumar;M.I. Sayyed;Mohammed S. Alqahtani;E. El Shiekh;Mayeen Uddin Khandaker
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3268-3276
    • /
    • 2023
  • The practice of identifying the potential zones for mineral exploration in a speedy and low-cost method includes the use of satellite imagery analysis as a part of remote sensing techniques. It is challenging to explore the iron mineralization of a region through conventional methods which are a time-consuming process. The current study utilizes the Hyperion satellite imagery for mapping the iron mineralization and associated geological features in the Irikkur region, Kannur, Kerala. Along with the remote sensing results, the field study and laboratory-based analysis were conducted to retrieve the ground truth point and geochemical proportion to verify the iron ore mineralization. The MC simulation showed for shielding properties indicate an increase in the linear attenuation coefficient with raising the Fe2O3+SiO2 concentrations in the investigated rocks where it is varied at 0.662 MeV in the range 0.190 cm-1 - 0.222 cm-1 with rising the Fe2O3+SiO2 content from 57.86 wt% to 71.15 wt%. The analysis also revealed that when the γ-ray energy increased from 0.221 MeV to 2.506 MeV, sample 1 had the largest linear attenuation coefficient, ranging from 9.33 cm1 to 0.12 cm-1. Charnockite rocks were found to have exceptional shielding qualities, making them an excellent natural choice for radiation shielding applications.