• Title/Summary/Keyword: geological groups

Search Result 85, Processing Time 0.032 seconds

Geotechnical characteristics and empirical geo-engineering relations of the South Pars Zone marls, Iran

  • Azarafza, Mohammad;Ghazifard, Akbar;Akgun, Haluk;Asghari-Kaljahi, Ebrahim
    • Geomechanics and Engineering
    • /
    • v.19 no.5
    • /
    • pp.393-405
    • /
    • 2019
  • This paper evaluates the geotechnical and geo-engineering properties of the South Pars Zone (SPZ) marls in Assalouyeh, Iran. These marly beds mostly belong to the Aghajari and Mishan formations which entail the gray, cream, black, green, dark red and pink types. Marls can be observed as rock (soft rock) or soil. Marlstone outcrops show a relatively rapid change to soils in the presence of weathering. To geotechnically characterise the marls, field and laboratory experiments such as particle-size distribution, hydrometer, Atterberg limits, uniaxial compression, laboratory direct-shear, durability and carbonate content tests have been performed on soil and rock samples to investigate the physico-mechanical properties and behaviour of the SPZ marls in order to establish empirical relations between the geo-engineering features of the marls. Based on the experiments conducted on marly soils, the USCS classes of the marls is CL to CH which has a LL ranging from 32 to 57% and PL ranging from 18 to 27%. Mineralogical analyses of the samples revealed that the major clay minerals of the marls belong to the smectite or illite groups with low to moderate swelling activities. The geomechanical investigations revealed that the SPZ marls are classified as argillaceous lime, calcareous marl and marlstone (based on the carbonate content) which show variations in the geomechanical properties (i.e., with a cohesion ranging from 97 to 320 kPa and a friction angle ranging from 16 to 35 degrees). The results of the durability tests revealed that the degradation potential showed a wide variation from none to fully disintegrated. According to the results of the experiments, the studied marls have been classified as calcareous marl, marlstone and argillaceous lime due to the variations in the carbonate and clay contents. The results have shown that an increase in the carbonate content leads to a decrease in the degradation potential and an increase in the density and strength parameters such as durability and compressive strength. A comparison of the empirical relationships obtained from the regression analyses with similar studies revealed that the results obtained herein are reasonably reliable.

Examination of Correlations Between Several Biochemical Components and Powdery Mildew Resistance of Flax Cultivars

  • Aly, Aly A.;Mansour, Mahmoud T. M.;Mohamed, Heba I.;Abd-Elsalam, Kamel A.
    • The Plant Pathology Journal
    • /
    • v.28 no.2
    • /
    • pp.149-155
    • /
    • 2012
  • A field trial was conducted in 2009/2010 and 2010/2011 growing seasons at Giza Agricultural Research Station to examine correlations between some biochemical componets and powdery mildews ($PM_s$) resistance in flax cultivars. Nine flax cultivars could be divided into five distinct groups, i.e., highly susceptible (Cortland and C.I. 2008), moderately susceptible (Giza 7, and Marshall), moderately resistant (Cass), resistant (Koto, Dakota and Wilden), and highly resistant (Ottowa 770B). The cultivars showed considerable variation in PM severity ranged from 8.05 on Ottowa 770B to 97.02% on Cortland. Total soluble proteins, total phenols, antioxidant enzymes (peroxidase and polyphenoloxidase), ascorbic acid, tocopherol, and malondialdehyde (MDA), were determined in uninfected leaves of the tested cultivars. Pearson's correlation coefficient was calculated to measure the degree of association between PM severity and each component. All components showed significant (P < 0.05) or highly significant (P < 0.01) negative correlation with PM severity except MDA, which showed positive correlation (P < 0.01). Linear regression analysis was used to evaluate the causal relationship between the biochemical components (independent variables) and PM severity (dependent variable). Coefficient of determination ($R^2$) values of the generated models ranged from 48.76 to 77.15%. Tocopherol, MDA, and proteins were the most important contributors to the total variation in PM severity as the $R^2$ values of their models were 71.78, 75.28, and 77.15%, respectively. The results of the present study suggest that tocopherol, MDA, and proteins in uninfected leaves can be used as biochemical markers to predict PM resistance in flax.

A Study on the Material Characteristics of Stone Tools Excavated from the Remain Point of Paleolithic Age in Osong Site, Cheongju

  • Kim, Jae Hwan;Han, Min Su
    • Journal of Conservation Science
    • /
    • v.35 no.1
    • /
    • pp.41-49
    • /
    • 2019
  • This study analyzes the material characteristics of stone tools of the Paleolithic period excavated from the Osong site, located at the project site for the creation of the Osong 2nd Life Science Complex, and estimates the provenance of the stone materials. Because the stones had been buried for a long time, their surfaces had become heavily weathered yellow or yellowish-brown, and the magnetic susceptibility values varied from 0 to 15(${\times}10^{-3}SI$). The excavated stone tools were rocks with various magnetic susceptibility values that could not be specified. Five stone tools subjected to destructive analysis were divided into two groups, one with a value of 1-3(${\times}10^{-3}SI$) and the other with a value of 5-9(${\times}10^{-3}SI$), both based on visible characteristics. The results of the thin-section analysis showed that most of the stone tools were basaltic rocks comprising plagioclase, quartz, and pyroxene, and some had iron content as high as 20 wt.%. These findings and the present geological map suggest that the stone tools were not made from the surrounding rocks because there are no areas containing basaltic rocks surrounding Bongsan-ri in Osong-eup. Andesite and tuff are distributed along with basaltic rocks in the Doan-myeon area in Jeongpyeong-gun, Chungcheongbuk-do Province, but the distance from the excavation site is too far. To determine whether this region is actually related to the provenance of the raw rock, it is necessary to conduct additional field surveys and comprehensive and precise analyses.

Estimation of Landslide Risk based on Infinity Flow Direction (무한방향흐름기법을 이용한 산사태 위험도 평가)

  • Oh, Sewook;Lee, Giha;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.2
    • /
    • pp.5-18
    • /
    • 2019
  • In this study, it was conducted a broad-area landslide analysis for the entire area of Kyungsangbuk-do Province based on spatially-distributed wetness index and root reinforcement infinity slope stability theory. Specifically, digital map, soil map and forest map were used to extract topological and geological parameters, and to build spatially-distributed database at $10m{\times}10m$ resolution. Infinity flow direction method was used for rain catchment area to produce spatially-distributed wetness index. The safety level that indicates risk of a broad-area landslide was classified into four groups. The result showed that areas with a high estimated risk of a landslide coincided with areas that recently went through an actual landslide, including Bonghwa and Gimcheon, and unstable areas were clustered around mountainous areas. A comparison between the estimation result and the records of actual landslide showed that the analysis model is effective for estimating a risk of a broad-area landslide based on accumulation of reasonable parameters.

Characteristic Community Type Classification of Forest Vegetation in South Korea (우리나라의 산림식생에 대한 군락형 분류)

  • Yun, Chung-Weon;Kim, Hye-Jin;Lee, Byung-Chun;Shin, Joon-Hwan;Yang, Hee Moon;Lim, Jong Hwan
    • Journal of Korean Society of Forest Science
    • /
    • v.100 no.3
    • /
    • pp.504-521
    • /
    • 2011
  • This study was carried out phytosociological forest community analysis, the sampled dada were collected and studied by 1,456 plots from 1993 to 2009 for 17 years in the 22 mountain area of South Korea. Four opposed species groups were classified and 10 vegetation units were divided as a result of forest vegetation classification. The 10 units were closely correlated with major environmental factors such as geological features, climatic conditions, topographical configurations, and etc. Therefore the forest vegetation of South Korea could be conclusively abstracted by 10 vegetation units and 7 eco-types.

Fracture Pattern and Physical Property of the Granodiorite for Stone Resources in the Nangsan Area (낭산일대에 분포하는 화강섬록암 암석자원의 열극체계 및 물리적 특성)

  • Yun, Hyun-Soo;Hong, Sei-Sun;Park, Deok-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.16 no.3
    • /
    • pp.144-161
    • /
    • 2007
  • The studied Nangsan area is widely covered by the Jurassic biotite granodiorite, which is mainly light grey in color and medium-grained in texture. Results of the regional fracture pattern analysis for the granodiorite body are as follows. Strike directions of fractures show three dominant sets in terms of frequency order. The sets are in an order of a (1) $N80^{\circ}{\sim}90^{\circ}E$ (1st-order)>(2) $N70^{\circ}{\sim}80^{\circ}E$ (2nd-order)>(3) $NS{\sim}N10^{\circ}E$ (3rd-order). Spacings of the fractures are mostly predominant in less than 200 cm. Therefore, the granodiorite of the area has more potential for non-dimensional stones than dimension ones. And orientations of vertical quarrying planes can be also divided into two groups in terms of frequency $N14^{\circ}W{\sim}N16^{\circ}E$ (1st-order) and (2) $N78^{\circ}E{\sim}N88^{\circ}E$ (2nd-order). The orientations of the two groups are more or less different from those of the regional fracture patterns. These can be mainly attributed to the preferred orientations of microcrack developed in the quarries. Of physical properties, specific gravity, absorption ratio, porosity, compressive strength, tensile strength and abrasive hardness are 2.65, 0.28%, 0.73%, $1,628kg/cm^2,\;100kg/cm^2$ and 31, respectively. Contrary to the porosity, both granites of the Nangsan and Sogrisan areas show almost similar values of the abrasive hardness. These can be explained by the differences of Qz+Af modes, which can be regarded as an index for abrasive resistance. Meanwhile, it is anticipated that comprehensive understanding of the orientations of vertical quarrying planes and characteristics of various physical properties will be utilized as an important information for stone resources.

Fluid Inclusion Studies on the Wolak Tungsten-Molybdenum Deposits, Korea (월악 중석-몰리브덴 광상의 유체포유물 연구)

  • Lee, In Sung;Park, Hee-In
    • Economic and Environmental Geology
    • /
    • v.15 no.1
    • /
    • pp.17-32
    • /
    • 1982
  • The Wolak tungsten-molybdenum deposits are tungsten-molybdenum bearing quartz veins which filled the fractures in Pre-Cambrian pebble-bearing calcareous hornfels, hornfels and Cretaceous granite. There are two vein groups in this mine, Dongsan vein group in the west and Kwangcheon vein group in the east. The ore minerals are wolframite, scheelite, molybdenite, native bismuth, bismuthinite, pyrite, arsenopyrite, chalcopyrite, cubanite, stannite, pyrrhotite, sphalerite, galena, marcasite, Pb-Bi sulfosalt and ilmenite. Quartz, calcite, beryl, fluorite, muscovite, rhodochrosite and siderite are gangue minerals. Fluid inclusion studies were carried out for the quartz, beryl, scheelite, early and late fluorite. Fluid inclusion studies reveal that liquid-gas inclusions are most common and occur in all of the minerals examined. Filling degree of the inclusions in the late fluorite is much higher than that of the inclusions in quartz and early fluorite. Liquid $CO_2$ bearing liquid-gas inclusions occur in quartz and early fluorite. Liquid, gas and solid phase inclusions occur in quartz, beryl and scheelite. Salinities of inclusions in quartz and beryl from Dongsan vein group range from 3.9 to 8.0, from 5.3 to 7.7 wt.% NaCl equivalent respectively. Salinities in the late fluorite range from 1.5 to 3.2 wt.% NaCl equivalent. In Kwangcheon vein group salinities range from 3.9 to 9.6 wt.% NaCl equivalent in quartz, from 2.8 to 7.3 wt.% NaCl equivalent in early fluorite, from 1.3 to 1.5 wt.% NaCl equivalent in late fluorite. Homogenization temperatures of inclusions range from $239^{\circ}$ to higher than $360^{\circ}C$ in quartz, over $360^{\circ}C$ in scheelite, from $288^{\circ}C$ to higher than $360^{\circ}C$ in beryl, and from $159^{\circ}$ to $202^{\circ}C$ in late fluorite of the Dongsan vein group. In Kwangcheon vein group, homo genization temperatures of inclusions range from $240^{\circ}C$ to higher than $360^{\circ}C$ in quartz and from $240^{\circ}$ to $328^{\circ}C$ in early fluorite. As a whole, in Dongsan and Kwangcheon vein groups it seems that there are no distinct differences in mineralogy, salinities and homogenization temperatures. No distinct variations in homogenization temperatures are revealed through about 300 m vertically in both district. The faint trend of increase in salinities in the lower level can be detected. The salinity, $CO_2$ content and the temperature of ore fluid were much higher in the early vein stage and then dropped off in the late stage of mineralization as represented by the quartz and fluorite inclusion data.

  • PDF

A Study on the Rainfall Infiltration Capacity of Soil (A Study on the Mid-Mountain Area of Jeju Island) (강우의 토양 침투 투수성 연구(제주도 중산간 지역을 중심으로))

  • Jeon, Byeong Chu;Lee, Su Gon;Kim, Sung Soo;Kim, Ki Su;Kim, Nam Ju
    • The Journal of Engineering Geology
    • /
    • v.29 no.2
    • /
    • pp.99-112
    • /
    • 2019
  • Rainfall infiltration through the unsaturated zone is influenced by a range of factors including topography, geology, soil, rainfall intensity, temperature and vegetation; the actual infiltration varies largely in time and space. The infiltration capacity of soil is a critical factor in identifying groundwater recharge and leakage of surface water. It may differ depending on soil types and geological features of a particular basin or territory as well as on the usage of the land. This study was conducted in forest and farmland region of the mid-mountain area (EL. 50~300 m) of Jeju Island to test soil infiltration capacity of the area where rainfall contributes to groundwater. Results were analyzed using the four soil group classification methods presented by Jeong et al. (1995) and NAS (2007) to discover that the method offered by NAS (2007) is more reliable in the mid-mountain area of Jeju Island. The study compares and reviews the existing classification methods using the results of infiltration capacity tests executed on different soil groups throughout the whole region of the Jeju mid-mountain area. It is expected that this work will serve as a guideline for evaluating surface water recharge and hydraulic characteristics of Jeju Island.

Geochemical Characteristics of Stream Sediments in the Konyang Area (곤양지역 하상퇴적물에 대한 지구화학적 특성)

  • Park Yaung-Seog;Park Dae-Woo
    • Economic and Environmental Geology
    • /
    • v.39 no.3 s.178
    • /
    • pp.329-342
    • /
    • 2006
  • The purpose of this study is to determine the geochemical characteristics for the stream sediments in the Konyang area. So we can estimate the environment contamination and understand geochemical disaster. We collect the stream sediments samples by wet sieving along the primary channels and slowly dry the collected samples in the laboratory and grind to pass a 200mesh using an alumina mortar and pestle for chemical analysis. Mineralogy, major, trace and rare earth elements are determined by XRD, XRE, ICP-AES and NAA analysis methods. For geochemical characteristics on the geological groups of stream sediments, the studied area was grouped into quartz porphyry area, sedimentary rock area, anorthosite area and gneiss area. Contents of major elements for the stream sediments in the Konyang area were $SiO_2\;41.86{\sim}76.74\;wt.%,\;Al_{2}O_{3}\;9.92{\sim}30.00\;wt.%,\;Fe_{2}O_{3}\;2.74{\sim}12.68\;wt.%,\;CaO\;0.22{\sim}3.31\;wt.%,\;MgO\;0.34{\sim}3.97\;wt.%,\;K_{2}O\;0.75{\sim}0.93\;wt.%,\;Na_{2}O\;0.25{\sim}1.92\;wt.%,\;TiO_{2}\;0.40{\sim}3.00\;wt.%,\;MnO\;0.03{\sim}0.21\;wt.%,\;P_{2}O_{5}\;0.05{\sim}0.38\;wt.%$. The contents of trace and rare earth elements for the stream sediments were $Cu\;7{\sim}102\;ppm,\;Pb\;15{\sim}47\;ppm,\;Sr\;48{\sim}513\;ppm,\;V\;29{\sim}129\;ppm,\;Zr\;31{\sim}217\;ppm,\;Li\;14{\sim}94\;ppm,\;Co\;5.6{\sim}32.1\;ppm,\;Cr\;23{\sim}259\;ppm,\;Cs\;1.7{\sim}8.7\;ppm,\;Hf\;2.1{\sim}109.0\;ppm,\;Rb\;34{\sim}247\;ppm,\;Sc\;4.5{\sim}21.9\;ppm,\;Zn\;24{\sim}609\;ppm,\;Sb\;0.8{\sim}2.6\;ppm,\;Th\;3{\sim}213\;ppm,\;Ce\;22{\sim}1000\;ppm,\;Eu\;0.7{\sim}5.3\;ppm,\;Yb\;0.6{\sim}6.4\;ppm$. Generally, the contents of $Al_{2}O_{3}\;and\;SiO_2$ had a good relationships with each other in rocks but it had a bad relationships in stream sediments for this study area. The contents of $Fe_{2}O_3$, CaO, MnO and $P_{2}O_{5}$ had a good relationships with major and minor elements in stream sediments of this study area. The contents of Co and V in the stream sediments had a good relationships with other toxic elements.

Hydrochemistry and Origin of Noble Gases and $CO_2$ Gas Within Carbonated Mineral Waters in the Kyeoungbuk-Kangwon Province, Korea (경북-강원일대 탄산약수의 수질화학과 탄산 및 영족기체 기원)

  • Jeong, Chan-Ho;Yoo, Sang-Woo;Kim, Kyu-Han;Nagao, Keisuke
    • The Journal of Engineering Geology
    • /
    • v.21 no.1
    • /
    • pp.65-77
    • /
    • 2011
  • Hydrochemical and carbon isotopic (${\delta}^{13}C_{DIC}$) analyses of 11 water samples, and noble gas isotopic analyses of 8 water samples collected in the Kyeoungbuk and Kangwon areas of Korea were performed to determine their hydrochemical characteristics and to interpret the source of noble gases and $CO_2$ gas in the water. The carbonated mineral waters are weakly acidic (PH = 5.59-6.04), and electrical conductivity ranges from 302 to $864\;{\mu}S/cm$. The chemical composition of all the water samples is Ca-$HCO_3$ type. The high contents of Fe and Mn exceed the safe limits for drinking water. The ${\delta}^{13}C_{DIC}$ values of the samples range from -5.30‰ to -2.84‰, indicating that the carbon is supplied mainly from a deep-seated source and to a lesser degree from an inorganic carbonate source. The $^3He/^4He$ ratios of the samples range from $1.51{\times}10^{-6}$ to $6.45{\times}10^{-6}$. The samples plot into three groups on a $^3He/^4He$ versus $^4He/^{20}Ne$ diagram: the deep-seated field (e.g., a mantle source), the atmospheric field, and the air-mantle mixing field. A wide range of $^4He/^{20}Ne$ ratios is observed ($0.036{\times}10^{-6}$ to $1.76{\times}10^{-6}$), indicating that while radiogenic $^4He$ is dominant in these water samples, mantle-origin He is also present. The supply of $CO_2$ gas and noble gases from a deep-seated source to carbonated waters is inferred to be controlled by geological structures such as faults and geological boundaries.