• Title/Summary/Keyword: geological and soil properties

Search Result 93, Processing Time 0.025 seconds

Seismic motions in a non-homogeneous soil deposit with tunnels by a hybrid computational technique

  • Manolis, G.D.;Makra, Konstantia;Dineva, Petia S.;Rangelov, Tsviatko V.
    • Earthquakes and Structures
    • /
    • v.5 no.2
    • /
    • pp.161-205
    • /
    • 2013
  • We study seismically induced, anti-plane strain wave motion in a non-homogeneous geological region containing tunnels. Two different scenarios are considered: (a) The first models two tunnels in a finite geological region embedded within a laterally inhomogeneous, layered geological profile containing a seismic source. For this case, labelled as the first boundary-value problem (BVP 1), an efficient hybrid technique comprising the finite difference method (FDM) and the boundary element method (BEM) is developed and applied. Since the later method is based on the frequency-dependent fundamental solution of elastodynamics, the hybrid technique is defined in the frequency domain. Then, an inverse fast Fourier transformation (FFT) is used to recover time histories; (b) The second models a finite region with two tunnels, is embedded in a homogeneous half-plane, and is subjected to incident, time-harmonic SH-waves. This case, labelled as the second boundary-value problem (BVP 2), considers complex soil properties such as anisotropy, continuous inhomogeneity and poroelasticity. The computational approach is now the BEM alone, since solution of the surrounding half plane by the FDM is unnecessary. In sum, the hybrid FDM-BEM technique is able to quantify dependence of the signals that develop at the free surface to the following key parameters: seismic source properties and heterogeneous structure of the wave path (the FDM component) and near-surface geological deposits containing discontinuities in the form of tunnels (the BEM component). Finally, the hybrid technique is used for evaluating the seismic wave field that develops within a key geological cross-section of the Metro construction project in Thessaloniki, Greece, which includes the important Roman-era historical monument of Rotunda dating from the 3rd century A.D.

Suggestion for Determination of DCM Design Parameter Based on the Statistical Method (통계적 방법을 이용한 DCM설계정수 결정을 위한 제안)

  • Jeong, Gyeong-Hwan;Shin, Min-Shik;Han, Gyeong-Tae;Lee, Jung-Hwa;Kim, Jae-Hwan
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.462-471
    • /
    • 2008
  • The quality control for DCM is based on the unconfined compressive strength of laboratory treated soils, the cement contents, setting and checking the strength of in-situ treated soils. Also the strength of in-situ is checked mainly by the core boring. In case of large size construction, it might be considered the distribution of DCM strength data as normal distribution, so it might be employed a statistical method to evaluate DCM strength easily. In Japan, it has been established correlation between the strength of laboratory treated soils, the strength of in-suit treated soil and the design strength. Also It has been employed domestically the correlation suggested by Japan. But the correlation, so called $\lambda$(ratio in the strength of laboratory treated soils and the in-suit) and $\gamma$(ratio in the strength of in-suit and the design strength), might be far different with the domestic due to different DCM system and soil properties. so it might be restrictive to use domestically. Therefore in this paper, It is presented correlation between the strength of laboratory treated soils and in-suit treated soil to be employed domestically by evaluating $\lambda$ based on the domestic in-suit illustrations.

  • PDF

Rural Groundwater Monitoring Network in Korea (농어촌지하수 관측망)

  • Lee, Byung Sun;Kim, Young In;Choi, Kwang-Jun;Song, Sung-Ho;Kim, Jin Ho;Woo, Dong Kwang;Seol, Min Ku;Park, Ki Yeon
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2014
  • Rural groundwater monitoring network has been managed by Korea Rural Community Corporation (KRC) since 1998. The network consists of two kinds of subnetworks; rural groundwater management network (RGMN) and seawater intrusion monitoring network (SIMN). RGMN has been operated to promote a sound and sustainable development of rural groundwater within the concerned area for groundwater quality and quantity. SIMN has been operated to protect the crops against hazards by the saline water in coastal areas in which the shortage of irrigation water become a main problem for agriculture. Currently, a total of 283 monitoring wells has been installed; 147 wells in 79 municipalities for RGMN and 136 wells in 52 ones for SIMN, respectively. Two subnetworks commonly monitor three hydrophysical properties (groundwater level, temperature, and electric conductivity) every hour. Monitored data are automatically transferred to the management center located in KRC. Data are opened to the public throughout website named to be the Rural Groundwater Net (www.groundwater.or.kr). Annual reports involving well logging and hydrochemical data of RGMN and SIMN have been published and distributed to the rural water management office of each municipalities. In addition, anyone who concerns about RGMN an SIMN can freely download these reports throughout the Rural Groundwater Net as well.

Analysis of Slope Stability Using GIS in the Northern Area of Chungju Lake (지구정보시스템을 이용한 충주호 북부 지역의 사면 안정 평가)

  • 문상기
    • Economic and Environmental Geology
    • /
    • v.33 no.1
    • /
    • pp.51-59
    • /
    • 2000
  • As a part of natural hazard assessment, regional slope stability analysis was conducted using Geoscientific Information System (GIS) in the northern area of Chungju Lake. Selected factors which affect the slope stability in the study area were lithology, soil, density of lineament, groundwater level, dip of slope, aspect of slope, and geological engineering properties. Geological structural domains were determined by collected data of joint orientation from about 200 sites in order to produce a slope instability map. Potential type of failure and its direction could be expected through the domains. And a slope instability map was produced, comparing the representative orientations of the domains with the orientations of the slopes which were made through TIN module in ARC/INFO. Under the consideration of environmental geological characteristics of the study area, rating and weighting of each factor of slope stability analysis were decided and spatial analysis of regional slope stability was couducted through overlaying technique of GIS. The result of areal distribution of slope stability showed that the most unstable area was the area between Mt. Pudae and Mt. Jubong, and the northern area of the railway station, Samtan.

  • PDF

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

Microstructure, mineralogy and physical properties: techniques and application to the Pusan Clay

  • Locat, Jacques;Tanaka, Hiroyuki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11b
    • /
    • pp.15-31
    • /
    • 1999
  • The Pusan Clay is analyzed hereafter from a point of view of mineralogy and microstructure. Results indicate that the Pusan Clay is basically illitic in nature and that the soil microstructure reveals some characteristics which could be responsible for its brittle behavior as observed from sample disturbance. The overall analysis would tend to consider that the Pusan Clay profile analyzed here shows mechanical properties similar to well structured soils or so-called cemented soils.

  • PDF

Experimental Study on Effects of Sand Particles Shape on Geotechnical Properties (실험적 연구를 통한 모래입자 형상이 토질정수에 미치는 영향)

  • Shin, Eun-Chul;Kim, Jong-In;Lee, Han-Jin
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.03a
    • /
    • pp.896-905
    • /
    • 2006
  • Several soil parameters such as particle characteristics, geological element, drainage and loading conditions are influenced on the shear strength of soil. The characteristics of soil particles are important factor to the shear strength of soil. However, this component is not well considered in the determination of soil strength in Korea. The particle shape of sand was analyzed by utilizing SEM(Scanning Electron Micrograph) and compared its results in terms of aspect ratio, angularity and roughness. Based on the determined soil parameters, the ultimate bearing capacity of sandy ground was estimated by using Terzaghi bearing capacity equation.

  • PDF

Soil development and bacterial community shifts along the chronosequence of the Midtre Lovénbreen glacier foreland in Svalbard

  • Kwon, Hye Young;Jung, Ji Young;Kim, Ok-Sun;Laffly, Dominique;Lim, Hyoun Soo;Lee, Yoo Kyung
    • Journal of Ecology and Environment
    • /
    • v.38 no.4
    • /
    • pp.461-476
    • /
    • 2015
  • Global warming has accelerated glacial retreat in the high Arctic. The exposed glacier foreland is an ideal place to study chronosequential changes in ecosystems. Although vegetation succession in the glacier forelands has been studied intensively, little is known about the microbial community structure in these environments. Therefore, this study focused on how glacial retreat influences the bacterial community structure and its relationship with soil properties. This study was conducted in the foreland of the Midtre Lovénbreen glacier in Svalbard (78.9°N). Seven soil samples of different ages were collected and analyzed for moisture content, pH, soil organic carbon and total nitrogen contents, and soil organic matter fractionation. In addition, the structure of the bacterial community was determined via pyrosequencing analysis of 16S rRNA genes. The physical and chemical properties of soil varied significantly along the distance from the glacier; with increasing distance, more amounts of clay and soil organic carbon contents were observed. In addition, Cyanobacteria, Firmicutes, and Actinobacteria were dominant in soil samples taken close to the glacier, whereas Acidobacteria were abundant further away from the glacier. Diversity indices indicated that the bacterial community changed from homogeneous to heterogeneous structure along the glacier chronosequence/distance from the glacier. Although the bacterial community structure differed on basis of the presence or absence of plants, the soil properties varied depending on soil age. These findings suggest that bacterial succession occurs over time in glacier forelands but on a timescale that is different from that of soil development.

Physical properties of granitic weathered soil on natural terrain around Seoul city (서울주변에 분포한 화강암류 풍화토층의 물리적 성질)

  • Kim, Kyeong-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1122-1129
    • /
    • 2010
  • Various soil tests were performed in the laboratory after soil samples were obtained from natural terrains distributed on the granitic rocks where are located in Mt. Bukhan, Mt. Surak and Mt. Gwanak around Seoul. Through the comparison of soil properties in each mountain, the difference of soil properties in a similar geological condition was investigated. According to the result of soil test, the soils were generally classified into calyey and silty sands with a well grade. Soil densities are ranged from $2.62kg/cm^3$ to $2.67kg/cm^3$, and water contents of soils are ranged from 3.77% to 31.12%. These values are not sorted locally. The wet unit weights of soils are ranged from $1.092kg/cm^3$ to $1.814kg/cm^3$. It has a big difference between the average values because that of Mt. Bukhan is $1.604kg/cm^3$ and those of Mt. Surak and Mt. Gwanak are $1.500kg/cm^3$ and $1.331kg/cm^3$, respectively. The internal friction angles are ranged from $31^{\circ}$ to $39^{\circ}$ and the cohesions are ranged from 1.57kPa to 8.63kPa. The shear strengths are too high and similar in all regions. The coefficients of permeability are ranged from $3.07{\times}10^{-3}cm/sec$ to $4.61{\times}10^{-2}cm/sec$. So, these soils are evaluated as a middle to high permeable ground. On average, the value of Mt. Bukhan is $1.47{\times}10^{-2}cm/sec$ and the values of Mt. Surak and Mt. Kwanak are $1.29{\times}10^{-2}cm/sec$ and $1.66{\times}10^{-2}cm/sec$, respectively.

  • PDF

The Effect of Geological Media on the Denitrification of Nitrate in Subsurface Environments (지중환경 내 지질 매체가 질산염의 탈질 반응에 미치는 영향에 대한 고찰)

  • Jeon, Ji-Hun;Lee, Woo-Chun;Lee, Sang-Woo;Kim, Soon-Oh
    • Journal of Soil and Groundwater Environment
    • /
    • v.25 no.2_spc
    • /
    • pp.16-27
    • /
    • 2020
  • Nitrate contamination has received much attention at local as well as regional scales. The domestic situation is not out of exception, and it has been reported to be very serious, particularly within agricultural areas as a result of excessive usage of nitrogen fertilizers. Meanwhile, nitrate can be naturally attenuated by denitrification in subsurface environments. The denitrification occurs through biotic (biological) and abiotic processes, and numerous previous studies preferentially focused the former. However, abiotic denitrification seems to be significant in specific environments. For this reason, this study reviewed the previous studies that focused on abiotic denitrification processes. Firstly, the current status of nitrate contamination in global and domestic scales is presented, and then the effect of geological media on denitrification is discussed while emphasizing the significance of abiotic processes. Finally, the implications of the literature review are presented, along with future research directions that warrant further investigations. The results of previous studies demonstrated that several geological agents could play a vital role in reducing nitrate. Iron-containing minerals such as pyrite, green rust, magnetite, and dissolved ferrous ion are known to be powerful electron donors triggering denitrification. In particular, it was proven that the rate of denitrification by green rust was comparative to that of biological denitrification. The results indicate that abiotic denitrification should be taken into account for more accurate evaluation of denitrification in subsurface environments.