• Title/Summary/Keyword: geologic age

Search Result 100, Processing Time 0.029 seconds

Areal Distribution Ratios of the Constituent Rocks with the Geologic Ages and Rock Types in the Chungbug-Chungnam-Daejeon Areas (충북-충남-대전지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun
    • The Journal of the Petrological Society of Korea
    • /
    • v.17 no.4
    • /
    • pp.191-205
    • /
    • 2008
  • In order to use the geologic information data such as industrialization of rock resources, site enlargement and development planning, distributive ratios of rock types and geologic ages were obtained by the ArcGIS 9.2 program, and digital geologic and geographic maps of 1:250,000 scale, in the Chungbug, Chungnam and Daejeon areas, respectively. In the Chungbug area, 64 rock kinds are developed and their geologic ages can be classified into 8 large groups. In the geologic ages, the ratios are decreasing in the order of Jurassic, Precambrian, Age-unknown, Cretaceous, Quaternary, Cambro-Ordovician and Carboniferous-Triassic ages, all of which comprise most ratios of 98.48% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Cretaceous biotite granite, Quaternary alluvium, Great limestone group, Lower phyllite zone and Meta-sandy rock zone of age-unknown Ogcheon group, Triassic Cheongsan granite, Precambrian granitic gneiss of Gyeonggi gneiss complex, Pebble bearing phyllite zone of age-unknown Ogcheon group and biotite gneiss of Sobaegsan metamorphic complex, all of which comprise the prevailing ratio of 84.27% in the area. In the Chungnam area, 35 rock types are developed and their geologic ages can be classified into 6 large groups. In the geologic ages, the ratios are decreasing in the order of Precambrian, Jurassic and Quaternary ages, which occupy the prevailing ratio of 87.55% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Precambrian banded gneiss of Gyeonggi metamorphic complex, Quaternary alluvium, Precambrian granite and granitic gneiss of Gyeonggi gneiss complex, Cretaceous acidic dykes, Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group and Quaternary reclaimed land, which occupy the ratios of 74.28% in the area. In the Daejeon area, 11 rock types are developed and their geologic ages can be classified into 5 large groups. In the ages, the ratios are decreasing in the order of Jurassic, Age-unknown and Quaternary, which occupy most ratios of 93.40% in the area. In the rock types, the ratios show the decreasing order of Jurassic Daebo granite, Quaternary alluvium and Lower phyllite zone and Pebble bearing phyllite zone of age-unknown Ogcheon group, which occupy the prevailing ratios of 91.09% in the area.

High School Science Teachers' Understanding of the Contents Related to the Geologic Time in the Secondary School Science Textbooks and the Guidebooks for Teachers (고등학교 과학 교사들의 지질 시대 관련 개념들에 대한 이해: 중등 교과서와 지도서를 중심으로)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.27 no.1
    • /
    • pp.32-48
    • /
    • 2006
  • The purposes of this study can divided into three parts: First, to investigate high school science teachers' understanding concerning geologic time; second, to analyze contents related to geologic time in the secondary school science textbooks and teachers' guidebooks; and third, to compare the response type of science teachers using the results of the contents. Forty high school science teachers in the Chungbuk province are chosen to answer to the questionnaire. Many teachers (50%) think that the age of Earth is simply measured by radioisotope. However, most of them do not know the measuring method in detail. The over 50% of the teachers think that the uniformitarianism, law of superposition, law of faunal succession law of unconformity, and law of intrusion are the great five laws of historical geology. Many part of the contents related to geologic time in the textbooks and guidebooks are incorrect and described distinctly from each other. Such content includes the age of Earth, age of the oldest rock in Earth, definition and range of geologic time, measuring method of the Earth's age, and law of historical geology. Many of the science teachers do not have a complete understanding of the contents related to geologic time. This study suggests that the reason lies heavily on the contents described in the textbooks and guidebooks. Therefore, it is necessary to review and revise the contents related to geologic time in the textbooks and guidebooks.

Areal Distribution Ratios of Constituent Rocks with Geologic Ages and Rock Types by GIS in the Gyeongsangbug-Do and Daegu Areas (GIS에 의한 경북-대구지역 구성암류의 지질시대별 및 암종별 분포율)

  • Yun, Hyun-Soo;Lee, Jin-Young;Yang, Dong-Yoon;Hong, Sei-Sun;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.19 no.1
    • /
    • pp.1-18
    • /
    • 2010
  • On the ArcGIS 9.2 program in Gyeongsangbug-Do and Daegu areas, distribution ratios of rock types and geologic ages were obtained from the 1 : 250,000 scaled digital geologic and geomorphic maps. The obtained distribution ratios here will be used the geologic information data for industrialization and development planning of rock resources. The Gyeongsangbug-Do area consists of 86 rock types that can be divided into 10 large groups in geologic age. Their geologic distribution ratios show the decreasing in the order of Cretaceous, Precambrian, Jurassic, Quaternary, Age-unknown and Tertiary, all of which occupy the prevailing ratio of 96.30% in the area. Of which, sixteen rock types are somewhat dominant ones (64.04%). They are of Precambrian Yulri group and granite gneiss of the Yeongnam metamorphic complex and biotite gneiss of the Sobaegsan metamorphic complex, Age-unknown granite, Jurassic granite, Cretaceous Gasongdong and Dogyedong formations of the Yeongyang sub-basin, Nagdong and Chunsan formations and intermediate-basic volcanics of Euiseong sub-basin, Jinju and Jindong formations and andesite-andesitic tuff of Milyang sub-basin, and hornblende granite, and Quaternary alluvium. They show relatively narrow ranges of 2.07-6.53% in geologic distribution in exception of Jurassic granite showing 13.14%. And the rest 70 rock types appear to very narrow range between 0.01 and 1.94 %. On the other hand, twelve rock types are developed in the Daegu area. Their geologic ages appear to be classified into Cretaceous and Quaternary occupying 86.05% and 11.39%, respectively. Seven rock types take possession of 94.04% among the all rocks. The major rock types are Jinju formation of the Sindong group, Chilgog, Haman and Jindong formations of the Hayang group, andesite and andesitic tuff, hornblende granite and Quaternary alluvium. With exception of andesite and andesitic tuff of 37.40%, the types show slightly wide range of 3.25-17.39%, which apparently differ trends from that of Gyeongsangbug-Do area. And the rest of rock types have narrow ranges of 0.22-1.81% in the Daegu area.

Distribution Characteristics of Geologic Age and Rock Type of Bedrocks at the National Wood Culture Heritage Site by GIS (GIS에 의한 국가지정 목조문화재 기반암류의 지질시대별 및 암층별 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Kim, Yong-Won;Hong, Sei-Sun;Kim, Eun-Kyung
    • The Journal of the Petrological Society of Korea
    • /
    • v.24 no.4
    • /
    • pp.347-364
    • /
    • 2015
  • The purpose of the work was carried out to contribute the factors related to geologic realm in the disaster stability evaluation items of the national wood culture heritages. Among the total heritages, the study targets mainly include 304 cases interpreted as a rock type in the geologic map of the bedrocks with GIS interpretation. The cases show the geologic ages, geologic provinces and rock types as the following distribution characteristics. In geologic ages, they are decreasing in the orders of Jurassic, Cretaceous, Quaternary, Precambrian, Age-unknown Cambro-Ordovician Carboniferous and Tertiary. Among the ages, the former fours occupy 285 cases (93.8%) of the targets, which show most of the wood culture heritages. In geologic provinces classified into 15, they are decreasing in the orders of Daebo intrusives, alluvium, Gyeongsang supergroup, Bulgugsa intrusives, Yeongnam massif, and Gyeonggi massif which occupy of predominant distribution 271 cases (89.1%) of them. In rock types of 52, those of 6, which are Jgr, Qa, Kp, Krt+Kav+Kav1+Kav2, Kbgr and GC2, occupy total 182 cases (59.9%) showing distinctly dominant trends from the rest of 46.

Areal Distribution Ratio and Characteristics of Constituent Rocks with Geologic Age and Rock Type by GIS in Gyeongnam-Ulsan-Busan Areas (GIS를 이용한 경남-울산-부산지역 구성암류의 지질시대별 및 암층별 분포율과 분포특성)

  • Yun, Hyun-Soo;Lee, Jin-Young;Hong, Sei-Sun;Yang, Dong-Yoon;Kim, Ju-Yong;Yi, Sang-Heon
    • The Journal of the Petrological Society of Korea
    • /
    • v.20 no.1
    • /
    • pp.39-59
    • /
    • 2011
  • To get the geologic information data such as rock resources, industrial ground, development planning and so on, distribution ratios of constituent rocks with geologic age and rock type were obtained in Gyeongnam, Ulsan and Busan areas by ArcGIS 9.3 program, digital geologic and geomorphic maps of 1 : 250,000 scale. Geologic ages and rock types in the Gyeongnam area can be divided into 6 and 40, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Precambrian, Quaternary, Jurassic, Triassic and Tertiary. They show the wide ranges of 1.35-57.36%, and the former makes the most dominant ratio. Major rock types are 24 ones, all of which occupy the ratio of 94.58% and relatively narrow ranges of 1.15-13.64% in the area. Among them, andesite and andesitic tuff shows the more or less dominant ratio, and separately develops in the northeast, mid east and south parts of the area. In the Ulsan area, geologic ages and rock types can be divided into 3 and II, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Triassic. They show the very wide range of 6.90-79.21%, and the former makes the most prevailing ratio. Major rock types are 9 ones, which totally occupy the ratio of 98.63% and more or less wide ranges of 1.50-39.01% in the area. Among them, Jindong formation shows the most dominant ratio, and widely develops in the inner and eastern part of the area. In the Busan area, geologic ages and rock types can be divided into 3 and 10, respectively. Their distribution ratios of the geologic ages are decreasing in the order of Cretaceous, Quaternary and Tertiary. They show the wide ranges of 6.73-47.02%, and the two former makes the most dominant ratio of 88.03%. Major rock types are 6 ones, all of which occupy the ratio of 93.02% and relatively wide ranges of 4.07-47.02% in the area. Among them, alluvium forms the most dominant ratio, which mostly develops in the lower Nagdong River, West Nagdong River and Suyeong River.

Review on the Stratigraphy and Geological Age of the Hominid Footprints-bearing Strata, Jeju Island, Korea (남제주 사람 발자국 화석을 포함한 지층의 층서와 지질 연대에 대한 고찰)

  • Kim, Kyung-Soo;Kim, Jeong-Yul
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.236-246
    • /
    • 2006
  • On the basis of field observation, geology of the footprints site consists of the Kwanghaeak Basalt, unnamed strata, Songaksan Tuff, Hamori Formation, and Sand Dune, in ascending order at the Hamori-Songaksan area and the Kwanghaeak Basalt, the hominid footprints-bearing strata, and Dune Sand are consisted in ascending order at the Sagaeri area. According to the designation that the Hamori Formation overlies the Songaksan Tuff, age dating results, and geologic sequence observed in the field, the strata containing hominid footprints are not correlated with the Hamori Formation but the unnamed strata, though the strata are shown as the Hamori Formation in the geologic map. It seems to be more reasonable that the geologic age of the footprints-bearing strata is thought to be around ca 15,000 yrs B.P. according to the results of $^{14}C$ dating.

Metallogenesis in Korea -Explanation of the Metallogenic Map of Korea- (한국(韓國)의 광상생성도(鑛床生成圖))

  • Kim, Seon-Eok;Hwang, Duk-Hwan
    • Economic and Environmental Geology
    • /
    • v.19 no.spc
    • /
    • pp.73-94
    • /
    • 1986
  • In order to make preparation of the Metallogenic Map of Korea, the writer have to collect and review the data of general geology and ore deposits of Korea which have been published up to date. The geology of Korea has been briefly simplified and grouped into the 15 formations so as to provide the base geologic map for making the Metallogenic Map of Korea. Geologic provinces of south Korea are divided into four, that is, Gyeonggi·Ryeongnam province, Ogcheon geosynclinal province, Gyeongsang basin province and Tertiary province. In the view of tectonics and related granites, the major orogenies in south Korea are as follows; Ryeongnam orogeny, Taebaeg disturbance, post-Sangweon disturbance, post-Joseon disturbance, Bulgugsa disturbance and Yeonil disturbance. Metallogenic epochs might coincide with the period of syntectonic or subsequent igneous rock intrusions accompanied with the above listed orogenies and disturbances. Thus, metallogenic epochs that are certain in Korea so far are; Precambrian periods, Paleozoic periods, Jurassic to early Cretaceous periods, late Cretaceous to early Tertiary periods, Quaternary periods and age-unknown periods. The Metallogenic Map of Korea shows 444 ore deposits and/or mines by symbols on a background adopted from the existing geologic and tectonic map. The 444 metallic and non-metallic deposits are categorized by the commodities they contain, size, geologic environment, mineralized age and mineralogic nature.

  • PDF

A Case Study of GIS-Based Site Classification in the Gyeongsang Province Constrained by Geologic and Topographic Information (GIS기반의 지질·지형 자료를 활용한 경상도지역의 지반분류 사례)

  • Kang, Su-Young;Kim, Kwang-Hee
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.12 no.4
    • /
    • pp.136-145
    • /
    • 2009
  • Site characteristic is an important input parameter in the geologic hazard assessments including, but not limited to, earthquakes, liquefaction and landslides. Although it is a routine to use data collected by boreholes or seismic prospecting for site classifications, we used indirect methods using the geologic and the topographic maps. A site classification map in the Gyeongsang Province has been produced by GIS tools based on geologic age, rock types, and elevations from the geologic map and the topographic map of Korea. Site B (rock site) is dominant in the study area, although softer soils are observed along rivers and in reclaimed lands. We have found that 73% of the site classification results in the study are in concordance with those obtained from borehole data. Observed discrepancies are attributed to errors in the geologic and the topographic maps. For some sites, the origin of the differences is not clear, which requires a further field study or a drilling. Site classification from this study provides essential information for reliable hazard assessments of earthquakes, floods, landslides and liquefaction. Results obtained in the study also play a crucial role in land use planning for developing areas.

  • PDF

The Stratigraphy and Geologic Structure of the Great Limestone Series in South Korea (남한(南韓) 대석회암통(大石灰岩統)의 층서(層序)와 지질구조(地質構造))

  • Kim, Ok Joon;Lee, Ha Young;Lee, Dai Sung;Yun, Suckew
    • Economic and Environmental Geology
    • /
    • v.6 no.2
    • /
    • pp.81-114
    • /
    • 1973
  • The purpose of the present study is to clarify the stratigraphy and geologic structure of the Great Limestone Series by means of study on fossil conodonts and detail investigation of geologic structure. In recent years very few geologists in Korea argue without confident evidences against the age and stratigraphy of the Great Limestone Series which have been rather well established previously in most parts of the regions although it is ambiguous and has not been studied in other areas. Five type localities in the Kangweon basin where the Great Limestone Series is well cropped out were chosen for the study. Total 26 genus and 66 species of conodont were identified from 290 samples collected and treated. From the study on conodonts the age of each formations of the Great Limestone Series has been determined as follows: The Great Limestone Series of Duwibong type Duwibong limestone: Caradocian (mid-Ord.) Jikunsan shale: Landeilian (mid-Ord.) Maggol limestone: Llanvirn-Llandeilian (mid-Ord.) Dumugol: Arenigian (Ord.) Hwajeol: Upper Cambrian The Great Limestone Series of Yeongweol type Mungok (Samtaesan) : Ordovician Machari: upper Cambrian The Great Limestone Series of Jeongseon type Erstwhile Jeongseon limestone: mid-Ord. The erstwhile Jongseon Limestone formation in Jeongseon district is separated into Hwajeol, Dongjeom, Dumudong, and Maggol formations which were cropped out repeatedly by folding and faulting, but Maggol is predominant in areal distribution. Yemi Limestone Breccia bed is not a single bed but distributed in several horizons so that it bears no stratigraphic significance. The limestone bed above Yemi Limestone Breccia, which was believed by some geologists to be much younger than Ordovician, is identified to be Maggol and its age is determined to be mid-Ordovician. Sambangsan formation in Yeongweol district was believed to be Cambrian age and lower horizon than Machari formation by Kobayashi, but C. M. Son believed that it might belong to later than Ordovician and lies above the Great Limestone Series of Yeongweol type. It was identified to be upper Cambrian and lies beneath the Machari formation and above the Daeki formation, the lower most horizon of the Great Limestone Series. The age of Yeongweol type Choseon system is contemporaneous with that of Duwibong type Choseon system. The difference in lithofacies is not due to lateral facies change, but due to the difference in its depositional environment. The Yeongweol type Choseon system is believed to be deposited in the small Yeongweol basin which was separated from the main Kangweon sedimentary basin. Judging from these facts it is definitely concluded that there exists no Gotlandian formation in the regions studied. Structurally the Kangweon basin comprises five basins and two uplifted areas. These structures were originated by at least two crustal movements, that is, Songrim disturbance of Triassic and Daebo orogeny of Jurasic age.

  • PDF

A Study on the Relationship between Stream Patterns and Geologic Structures in South Korea (남한의 수계발달과 지질구조와의 관계에 관한 연구)

  • Kim, Kyu Han;Kim, Wan Sook
    • Economic and Environmental Geology
    • /
    • v.27 no.6
    • /
    • pp.593-599
    • /
    • 1994
  • Drainage patterns were investigated to interpret the unknown geologic structure and geomorphic history in South Korea. Dendritic and rectangular patterns are most prominent ones developed in the granitic and sedimentary terrain. Drainage density ranges from 0.47 in the Nakdong river basin to 0.31 in the South Han river basin. Fine drainge texture is appeared in the Nakdong basin characterized by sedimentary beds of Mesozoic age, and coarse one are in the South Han river basin where Precambrian metamorphic rocks are dominated. Geological structures interpreted by stream pattern analysis are reasonally good agreement with the result by lineaments analysis and geological mapping.

  • PDF