• 제목/요약/키워드: geodesic balls

검색결과 5건 처리시간 0.017초

Tube volumes about geodesic balls

  • Lee, Sung-Yun
    • 대한수학회논문집
    • /
    • 제11권1호
    • /
    • pp.209-214
    • /
    • 1996
  • A flat space is characterized by tube volumes about geodesic balls. Similar characterizations are also given for other rank one symmetric spaces.

  • PDF

VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS

  • Jeong, Sunjin;Park, Keun
    • 충청수학회지
    • /
    • 제31권4호
    • /
    • pp.369-379
    • /
    • 2018
  • Let ${\mathbb{H}}_3$ be the 3-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in ${\mathbb{H}}_3$. Let $B_e(R)$ be the geodesic ball with center e (the identity of ${\mathbb{H}}_3$) and radius R in ${\mathbb{H}}_3$. Then, the volume of $B_e(R)$ is given by $$Vol(B_e(R))={\frac{\pi}{6}}\{-16R+(R^2+6){\sin}\;R+(R^3+10R){\cos}\;R+(R^4+12R^2){\int\nolimits_0^R}\;{\frac{{\sin}\;t}{t}}dt\}$$.

VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS ℍ5

  • Kim, Hyeyeon
    • 충청수학회지
    • /
    • 제32권3호
    • /
    • pp.349-363
    • /
    • 2019
  • Let ${\mathbb{H}}^5$ be the 5-dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in ${\mathbb{H}}^5$. Let $B_e(R)$ be the geodesic ball with center e (the identity of ${\mathbb{H}}^5$) and radius R in ${\mathbb{H}}^5$. Then, the volume of $B_e(R)$ is given by $${\hfill{12}}Vol(B_e(R))\\{={\frac{4{\pi}^2}{6!}}{\left(p_1(R)+p_4(R){\sin}\;R+p_5(R){\cos}\;R+p_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^R}{\frac{{\sin}\;t}{t}}dt\right.}\\{\left.{\hfill{65}}{+q_4(R){\sin}(2R)+q_5(R){\cos}(2R)+q_6(R){\displaystyle\smashmargin{2}{\int\nolimits_0}^{2R}}{\frac{{\sin}\;t}{t}}dt}\right)}$$ where $p_n$ and $q_n$ are polynomials with degree n.

COMPARISON THEOREMS FOR THE VOLUMES OF TUBES ABOUT METRIC BALLS IN CAT(𝜿)-SPACES

  • Lee, Doohann;Kim, Yong-Il
    • 충청수학회지
    • /
    • 제24권3호
    • /
    • pp.457-467
    • /
    • 2011
  • In this paper, we establish some comparison theorems about volumes of tubes in metric spaces with nonpositive curvature. First we compare the Hausdorff measure of tube about a metric ball contained in an (n-1)-dimensional totally geodesic subspace of an n-dimensional locally compact, geodesically complete Hadamard space with Lebesgue measure of its corresponding tube in Euclidean space ${\mathbb{R}}^n$, and then develop the result to the case of an m-dimensional totally geodesic subspace for 1 < m < n with an additional condition. Also, we estimate the Hausdorff measure of the tube about a shortest curve in a metric space of curvature bounded above and below.