VOLUMES OF GEODESIC BALLS IN HEISENBERG GROUPS

Sunjin Jeong* and Keun Park**

Abstract. Let \mathbb{H}^{3} be the 3 -dimensional Heisenberg group equipped with a left-invariant metric. In this paper we calculate the volumes of geodesic balls in \mathbb{H}^{3}. Let $B_{e}(R)$ be the geodesic ball with center e (the identity of \mathbb{H}^{3}) and radius R in \mathbb{H}^{3}. Then, the volume of $B_{e}(R)$ is given by

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{e}(R)\right) \\
& \qquad \begin{aligned}
=\frac{\pi}{6}\{ & -16 R+\left(R^{2}+6\right) \sin R+\left(R^{3}+10 R\right) \cos R \\
& \left.+\left(R^{4}+12 R^{2}\right) \int_{0}^{R} \frac{\sin t}{t} d t\right\} .
\end{aligned}
\end{aligned}
$$

1. Introduction

Let \mathcal{N} be a 2 -step nilpotent Lie algebra with an inner product $<,>$ and N its unique simply connected 2 -step nilpotent Lie group with the left invariant metric induced by $<,>$ on \mathcal{N}. Let \mathcal{Z} be the center of \mathcal{N}. Then \mathcal{N} is represented by the direct sum of \mathcal{Z} and its orthgonal complement \mathcal{Z}^{\perp}.

For each $Z \in \mathcal{Z}$, a skew symmetric linear transformation $j(Z): \mathcal{Z}^{\perp} \rightarrow$ \mathcal{Z}^{\perp} is defined by $j(Z) X=(a d X)^{*} Z$ for $X \in \mathcal{Z}^{\perp}$. Or, equivalently,

$$
<j(Z) X, Y>=<[X, Y], Z>
$$

for all $X, Y \in \mathcal{Z}^{\perp}$.
A 2-step nilpotent Lie algebra \mathcal{N} is said to be an algebra of Heisenberg type if

$$
j(Z)^{2}=-|Z|^{2} i d
$$

Received June 04, 2018; Accepted September 01, 2018.
2010 Mathematics Subject Classification: 53C30, 22E25.
Key words and phrases: Heisenberg group, geodesic ball.
Correspondence should be addressed to Keun Park, kpark@ulsan.ac.kr.
**This work was partially supported by 2012 Research Fund of University of Ulsan.
for all $Z \in \mathcal{Z}$. And a Lie group N is said to be a group of Heisenberg type if its Lie algebra \mathcal{N} is of Heisenberg type.

The Heisenberg groups are examples of Heisenberg type. That is, let $n \geq 1$ be any integer and $\left\{X_{1}, \cdots, X_{n}, Y_{1}, \cdots, Y_{n}\right\}$ a basis of $R^{2 n}=\mathcal{V}$. Let \mathcal{Z} be an one dimensional vector space spanned by $\{Z\}$. Define

$$
\left[X_{i}, Y_{i}\right]=-\left[Y_{i}, X_{i}\right]=Z
$$

for any $i=1,2, \cdots, n$ with all other brackets are zero. Give on $\mathcal{N}=$ $\mathcal{V} \oplus \mathcal{Z}$ the inner product such that the set of vectors $\left\{X_{i}, Y_{i}, Z \mid i=\right.$ $1,2, \cdots, n\}$ forms an orthonormal basis. Let N be the simply connected 2 -step nilpotent group of Heisenberg type which is determined by \mathcal{N} and equipped with a left-invariant metric induced by the inner product in \mathcal{N}. The group N is called the $(2 n+1)$-dimensional Heisenberg group and denoted by $\mathbb{H}^{2 n+1}$.

In this paper, we calculate the volumes of the geodesic balls on the Heisenberg group \mathbb{H}^{3} :

Theorem 1.1. Let $B_{e}(R)$ be the geodesic ball with center e (the identity of \mathbb{H}^{3}) and radius R in \mathbb{H}^{3}. Then, the following holds.

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{e}(R)\right) \\
& \qquad \begin{aligned}
=\frac{\pi}{6}\{ & -16 R+\left(R^{2}+6\right) \sin R+\left(R^{3}+10 R\right) \cos R \\
& \left.+\left(R^{4}+12 R^{2}\right) \int_{0}^{R} \frac{\sin t}{t} d t\right\} .
\end{aligned}
\end{aligned}
$$

For a Riemannian manifold M and $p \in M$, the volume growth, $V G_{p}(M)$ of M at p is defined by

$$
V G_{p}(M)=\inf \left\{x \in R \left\lvert\, \lim _{r \rightarrow \infty} \frac{\operatorname{Vol}\left(B_{p}(r)\right)}{r^{x}}=0\right.\right\} .
$$

If M is a Lie group with a left invariant metric, then we see that $V G_{p}(M)=V G_{q}(M)$ for any $p, q \in M$. In this case, it is denoted by $V G(M)$.

Corollary 1.2. The volume growth, $V G\left(\mathbb{H}^{3}\right)$ of \mathbb{H}^{3} is given as follows;

$$
V G\left(\mathbb{H}^{3}\right)=4 .
$$

2. Preliminaries

Let \mathcal{N} be a 2 -step nilpotent Lie algebra with an inner product $<,>$ and N be its unique simply connected 2 -step nilpotent Lie group with
the left invariant metric induced by $<,>$ on \mathcal{N}. The center of \mathcal{N} is denoted by \mathcal{Z}. Then \mathcal{N} can be expressed as the direct sum of \mathcal{Z} and its orthogonal complement \mathcal{Z}^{\perp}.

Recall that for $Z \in \mathcal{Z}$, a skew symmetric linear transformation $j(Z)$: $\mathcal{Z}^{\perp} \rightarrow \mathcal{Z}^{\perp}$ is defined by $j(Z) X=(\operatorname{ad} X)^{*} Z$ for $X \in \mathcal{Z}^{\perp}$. Or, equivalently,

$$
\langle j(Z) X, Y\rangle=\langle[X, Y], Z\rangle
$$

for $X, Y \in \mathcal{Z}^{\perp}$. A 2-step nilpotent Lie group N is said to be of Heisenberg type if

$$
j(Z)^{2}=-|Z|^{2} \mathrm{id}
$$

for all $Z \in \mathcal{Z}$.
Let $\gamma(t)$ be a curve in N such that $\gamma(0)=e$ (identity element in N) and $\gamma^{\prime}(0)=X_{0}+Z_{0}$ where $X_{0} \in \mathcal{Z}^{\perp}$ and $Z_{0} \in \mathcal{Z}$. Since $\exp : \mathcal{N} \rightarrow N$ is a diffeomorphism ([9]), the curve $\gamma(t)$ can be expressed uniquely by $\gamma(t)=\exp (X(t)+Z(t)]$ with

$$
\begin{array}{ll}
X(t) \in \mathcal{Z}^{\perp}, & X^{\prime}(0)=X_{0}, \quad X(0)=0 \\
Z(t) \in \mathcal{Z}, & Z^{\prime}(0)=Z_{0}, \quad Z(0)=0
\end{array}
$$

A. Kaplan $([7,8])$ shows that the curve $\gamma(t)$ is a geodesic in N if and only if

$$
\begin{aligned}
& X^{\prime \prime}(t)=j\left(Z_{0}\right) X^{\prime}(t) \\
& Z^{\prime}(t)+\frac{1}{2}\left[X^{\prime}(t), X(t)\right] \equiv Z_{0}
\end{aligned}
$$

The following Lemma is useful in the later.
Lemma 2.1. [2] Let N be a simply connected 2-step nilpotent Lie group with a left invariant metric, and let $\gamma(t)$ be a geodesic of N with $\gamma(0)=e$ and $\gamma^{\prime}(0)=X_{0}+Z_{0}$ where $X_{0} \in \mathcal{Z}^{\perp}$ and $Z_{0} \in \mathcal{Z}$. Then, one has

$$
\gamma^{\prime}(t)=d l_{\gamma(t)}\left(X^{\prime}(t)+Z_{0}\right), t \in R
$$

where $X^{\prime}(t)=e^{t j\left(Z_{0}\right)} X_{0}$ and $l_{\gamma(t)}$ is the left translation by $\gamma(t)$.
Throughout this paper, different tangent spaces will be identified with \mathcal{N} via left translation. So, in above lemma, we can consider $\gamma^{\prime}(t)$ as

$$
\gamma^{\prime}(t)=X^{\prime}(t)+Z_{0}=e^{t j\left(Z_{0}\right)} X_{0}+Z_{0}
$$

Let \mathbb{H}^{3} be the 3 dimensional Heisenberg group with a left invariant metric and \mathcal{H} its Lie algebra. Let $\gamma(t)$ be an unit speed geodesic on \mathbb{H}^{3} with $\gamma(0)=e\left(\right.$ the identity element of $\left.\mathbb{H}^{3}\right)$ and $\gamma^{\prime}(0)=X_{0}+Z_{0}$ where $X_{0} \in \mathcal{Z}^{\perp}$ and $Z_{0} \in \mathcal{Z}$. Assume that $X_{0} \neq 0$ and $Z_{0} \neq 0$. Then

$$
\left\{X_{0}+Z_{0}, \frac{\left|Z_{0}\right|}{\left|X_{0}\right|} X_{0}-\frac{\left|X_{0}\right|}{\left|Z_{0}\right|} Z_{0}, \frac{1}{\left|Z_{0}\right|\left|X_{0}\right|} j\left(Z_{0}\right) X_{0}\right\}
$$

is an orthonormal basis of \mathcal{H}. Let

$$
\begin{aligned}
& e_{1}(t)=\frac{\left|Z_{0}\right|}{\left|X_{0}\right|} X^{\prime}(t)-\frac{\left|X_{0}\right|}{\left|Z_{0}\right|} Z_{0} \\
& e_{2}(t)=\frac{1}{\left|Z_{0}\right|\left|X_{0}\right|} j\left(Z_{0}\right) X^{\prime}(t)
\end{aligned}
$$

Then, $\left\{\gamma^{\prime}(t), e_{1}(t), e_{2}(t)\right\}$ is an orthonormal frame along $\gamma(t)$ on \mathbb{H}^{3}.
We start the following Proposition.
Proposition 2.2. [5] For each $k=1,2$, let $J_{k}(t)$ be the Jacobi field with $J_{k}(0)=0, J_{k}^{\prime}(0)=e_{k}(0)$. Then, we have that

$$
\left[\begin{array}{l}
J_{1}(t) \\
J_{2}(t)
\end{array}\right]=B(t)\left[\begin{array}{l}
e_{1}(t) \\
e_{2}(t)
\end{array}\right]
$$

where

$$
B(t)=\frac{1}{\left|Z_{0}\right|^{3}}\left[\begin{array}{cc}
\sin \left(\left|Z_{0}\right| t\right)-\left(1-\left|Z_{0}\right|^{2}\right)\left|Z_{0}\right| t & \left|Z_{0}\right|\left(\cos \left(\left|Z_{0}\right| t\right)-1\right) \\
\left|Z_{0}\right|\left(1-\cos \left(\left|Z_{0}\right| t\right)\right) & \left|Z_{0}\right|^{2} \sin \left(\left|Z_{0}\right| t\right)
\end{array}\right]
$$

Corollary 2.3. $[1,6]$ Let \mathbb{H}^{3} be the $(2 n+1)$-dimensional Heisenberg group and \mathcal{N} its Lie algebra. Let $\gamma(t)$ be an unit speed geodesic in N with $\gamma(0)=e($ the identity element of $N)$ and $\gamma^{\prime}(0)=X_{0}+Z_{0}$ where $X_{0} \in \mathcal{Z}^{\perp}$ and $Z_{0} \in \mathcal{Z}$. If $Z_{0} \neq 0$, then all the conjugate points along γ are at $t \in \frac{2 \pi}{\left|Z_{0}\right|} \mathbb{Z}^{*} \cup \mathbb{A}$ where

$$
\mathbb{Z}^{*}=\{ \pm 1, \pm 2, \ldots\}
$$

and

$$
\mathbb{A}=\left\{t \in \mathbb{R}-\{0\} \left\lvert\,\left(1-\left|Z_{0}\right|^{2}\right) \frac{\left|Z_{0}\right| t}{2}=\tan \frac{\left|Z_{0}\right| t}{2}\right.\right\}
$$

In particular, $\frac{2 \pi}{\left|Z_{0}\right|}$ is the first conjugate point of e along γ.
If $Z_{0}=0$, then there are no conjugate points along γ.
For the conjugate points of another type of Heisenberg groups, Quaternionic Heisenberg groups $\mathbb{H}^{4 n+3}$, see [4].
G. Walschap [10] showed that the first conjugate loci and the cut loci are equal in the case of the groups of Heisenberg type or the 2step nilpotent groups with one-dimensional center. So, we consider the geodesic balls $B_{e}(r)$ with the radius $r \leq 2 \pi$.

In [5], C. Jang, J. Park and K. Park obtained a fomula of the volumes of geodesic balls in the Heisenberg group \mathbb{H}^{3} as the form of power series.

Theorem 2.4. [5] Let $B_{e}(R)$ be the geodesic ball with center e and radius R in \mathbb{H}^{3}. Then, the following holds.

$$
\operatorname{Vol}\left(B_{e}(R)\right)=4 \pi\left(\frac{R^{3}}{3}+2 \sum_{n=2}^{\infty}(-1)^{n} \frac{R^{2 n+1}}{(2 n+1)!(2 n-1)(2 n-3)}\right)
$$

3. Main results

Lemma 3.1. [5]

$$
\begin{aligned}
\operatorname{det}(B(t)) & =\frac{1}{\left|Z_{0}\right|^{4}}\left\{2\left(1-\cos \left(\left|Z_{0}\right| t\right)\right)-\left(1-\left|Z_{0}\right|^{2}\right)\left|Z_{0}\right| t \sin \left(\left|Z_{0}\right| t\right)\right\} \\
& \geq 0
\end{aligned}
$$

Lemma 3.2. Let n be a natural number and $f:[0, x] \rightarrow R$ have continuous n-th derivatives. Assume that for $k=0,1, \cdots, n-1$, the $\lim _{t \rightarrow 0^{+}} \frac{f^{(k)}(t)}{t^{n-k}}$ exists and $\frac{f^{(n)}(t)}{t}$ is integrable on $[0, x]$. Then, $\frac{f(t)}{t^{n+1}}$ is integrable on $[0, x]$ and the following holds.

$$
\int_{0}^{x} \frac{f(t)}{t^{n+1}} d t=-\sum_{k=0}^{n-1} \frac{1}{n(n-1) \cdots(n-k)}\left[\frac{f^{(k)}(t)}{t^{n-k}}\right]_{0^{+}}^{x^{-}}+\frac{1}{n!} \int_{0}^{x} \frac{f^{(n)}(t)}{t} d t
$$

where

$$
\left[\frac{f^{(k)}(t)}{t^{n-k}}\right]_{0^{+}}^{x^{-}}=\lim _{t \rightarrow x^{-}} \frac{f^{(k)}(t)}{t^{n-k}}-\lim _{t \rightarrow 0^{+}} \frac{f^{(k)}(t)}{t^{n-k}}
$$

Proof. We use the mathematical induction. For $n=1$, we see that

$$
\int_{0}^{x} \frac{f(t)}{t^{2}} d x=\int_{0}^{x} f(t) d\left(-\frac{1}{t}\right)=-\left[\frac{f(t)}{t}\right]_{0^{+}}^{x^{-}}+\int_{0}^{x} \frac{f^{(1)}(t)}{t} d t
$$

Suppose that

$$
\int_{0}^{x} \frac{f(t)}{t^{n+1}} d t=-\sum_{k=0}^{n-1} \frac{1}{n(n-1) \cdots(n-k)}\left[\frac{f^{(k)}(t)}{t^{n-k}}\right]_{0^{+}}^{x^{-}}+\frac{1}{n!} \int_{0}^{x} \frac{f^{(n)}(t)}{t} d t
$$

holds. Then,

$$
\begin{aligned}
\int_{0}^{x} \frac{f(t)}{t^{n+2}} d t & =\int_{0}^{x} f(t) d\left(-\frac{1}{n+1} t^{-(n+1)}\right) \\
& =-\frac{1}{n+1}\left[\frac{f(t)}{t^{n+1}}\right]_{0^{+}}^{x^{-}}+\frac{1}{n+1} \int_{0}^{x} \frac{f^{(1)}(t)}{t^{n+1}} d t
\end{aligned}
$$

Since

$$
\begin{aligned}
& \int_{0}^{x} \frac{f^{(1)}(t)}{t^{n+1}} d x \\
& \quad=-\sum_{k=0}^{n-1} \frac{1}{n(n-1) \cdots(n-k)}\left[\frac{f^{(k+1)}(t)}{t^{n-k}}\right]_{0^{+}}^{x^{-}}+\frac{1}{n!} \int_{0}^{x} \frac{f^{(n+1)}(t)}{t} d t
\end{aligned}
$$

we have that

$$
\begin{aligned}
\int_{0}^{x} \frac{f(t)}{t^{n+2}} d t= & -\sum_{k=0}^{n} \frac{1}{(n+1)(n+1-1) \cdots(n+1-k)}\left[\frac{f^{(k)}(t)}{t^{n+1-k}}\right]_{0^{+}}^{x^{-}} \\
& +\frac{1}{(n+1)!} \int_{0}^{x} \frac{f^{(n+1)}(t)}{t} d t
\end{aligned}
$$

This completes the proof.
Lemma 3.3. For $R>0$, the followings are hold.
(1) $\int_{0}^{R} \frac{2 t+t \cos t-3 \sin t}{t^{5}} d t$

$$
=\frac{R^{-4}}{24}\left(-16 R+\left(R^{2}+18\right) \sin R+\left(R^{3}-2 R\right) \cos R+R^{4} \int_{0}^{R} \frac{\sin t}{t} d t\right)
$$

(2) $\int_{0}^{R} \frac{\sin t-t \cos t}{t^{3}} d t=\frac{R^{-2}}{2}\left(-\sin R+R \cos R+R^{2} \int_{0}^{R} \frac{\sin t}{t} d t\right)$.

Proof. (1) Let $f(t)=2 t+t \cos t-3 \sin t$. Then, direct calculations give that

$$
\begin{aligned}
{\left[\frac{f(t)}{t^{4}}\right]_{0^{+}}^{R} } & =R^{-4}(2 R+R \cos R-3 \sin R) \\
{\left[\frac{f^{(1)}(t)}{t^{3}}\right]_{0^{+}}^{R} } & =R^{-3}(2-2 \cos R-R \sin R) \\
{\left[\frac{f^{(2)}(t)}{t^{2}}\right]_{0^{+}}^{R} } & =R^{-2}(\sin R-R \cos R) \\
{\left[\frac{f^{(3)}(t)}{t}\right]_{0^{+}}^{R} } & =\sin R
\end{aligned}
$$

Since $f^{(4)}(t)=\sin t+t \cos t$, by Lemma 3.2, we have that

$$
\int_{0}^{R} \frac{f(t)}{t^{5}} d t
$$

$$
=-\sum_{k=0}^{3} \frac{1}{4 \times 3 \times \cdots \times(4-k)}\left[\frac{f^{(k)}(t)}{t^{4-k}}\right]_{0^{+}}^{R^{-}}+\frac{1}{4!} \int_{0}^{R} \frac{f^{(4)}(t)}{t} d t
$$

$$
=\frac{R^{-4}}{24}\left(-16 R+\left(R^{2}+18\right) \sin R+\left(R^{3}-2 R\right) \cos R+R^{4} \int_{0}^{R} \frac{\sin t}{t} d t\right)
$$

Proof of (2) is similar to (1).
We introduce the volume formula of geodesic balls in Riemannian manifolds, which is well-known. For example, see [3]. Let M be a Riemannian manifold with a metric g and $p \in M$. Take an orthonormal basis $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$ of $T_{p} M$ and let $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ be the coordinates determined by $\left\{u_{1}, u_{2}, \cdots, u_{n}\right\}$. This local coordinate system is called the normal coordinate system at p. It is easy to show that $\frac{\partial}{\partial x_{i} m}=\left(d \exp _{p}\right)_{\sum_{i=1}^{n} x_{i} u_{i}}\left(u_{i}\right)$ where $m=\exp _{p}\left(\sum_{i=1}^{n} x_{i} u_{i}\right)$. Then, the volume form v_{g} on U_{p} is given by

$$
v_{g}=\sqrt{\operatorname{det}\left(g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)\right)} d x_{1} \wedge d x_{2} \wedge \cdots \wedge d x_{n}
$$

where $g_{i j}$ is the metric coefficients of g in U_{p}. Therefore, the volume of the geodesic ball $B_{p}(r)$ is given by

$$
\operatorname{Vol}\left(B_{p}(r)\right)=\int_{\exp _{p}^{-1}\left(B_{p}(r)\right)} \exp _{p}^{*} v_{g}
$$

Let $\gamma(t)$ be the unit speed geodesic in M with $\gamma(0)=p, \gamma^{\prime}(0)=u_{1}$ and let $J_{i}(t)$ be the Jacobi field with $J_{i}(0)=0$ and $J_{i}^{\prime}(0)=u_{i}$ for each $i=2,3, \cdots, n$. Then we know that

$$
\left(d \exp _{p}\right)_{t u_{1}} u_{1}=\gamma^{\prime}(t)
$$

and

$$
\left(d \exp _{p}\right)_{t u_{1}} u_{i}=\frac{1}{t} J_{i}(t)
$$

for each $i=2,3, \cdots, n$. So, we see that

$$
\sqrt{\operatorname{det}\left(g\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right)\right)}=t^{-(n-1)} \sqrt{\operatorname{det}\left(g\left(J_{i}(t), J_{j}(t)\right)\right)} .
$$

Hence, we have that

$$
\begin{aligned}
\exp _{p}^{*} v_{g} & =t^{-(n-1)} \sqrt{\operatorname{det}\left(g\left(J_{i}(t), J_{j}(t)\right)\right)} d x_{1} d x_{2} \cdots d x_{n} \\
& =\sqrt{\operatorname{det}\left(g\left(J_{i}(t), J_{j}(t)\right)\right)} d t d u
\end{aligned}
$$

where $d u$ denote the canonical measure of the unit sphere S^{n-1}. Therefore, by Fubini's Theorem we get that

$$
\operatorname{Vol}\left(B_{p}(r)\right)=\int_{S^{n-1}} \int_{0}^{r} \sqrt{\operatorname{det}\left(g\left(J_{i}(t), J_{j}(t)\right)\right)} d t d u
$$

ThEOREM 3.4. Let $0 \leq R \leq 2 \pi$ and $B_{e}(R)$ be the geodesic ball with center e and radius R in \mathbb{H}^{3}. Then, the following holds.

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{e}(R)\right) \\
& \qquad \begin{aligned}
=\frac{\pi}{6}\{ & -16 R+\left(R^{2}+6\right) \sin R+\left(R^{3}+10 R\right) \cos R \\
& \left.+\left(R^{4}+12 R^{2}\right) \int_{0}^{R} \frac{\sin t}{t} d t\right\}
\end{aligned}
\end{aligned}
$$

Proof. Using Proposition 2.2, we have that

$$
\begin{aligned}
& \operatorname{det}\left(<J_{i}(t), J_{j}(t)>\right) \\
&= \operatorname{det}\left(J_{i}(t) \cdot J_{j}(t)\right) \\
&= \operatorname{det}\left(\left[\begin{array}{l}
J_{1}(t) \\
J_{2}(t)
\end{array}\right]\left[\begin{array}{ll}
J_{1}(t) & J_{2}(t)
\end{array}\right]\right) \\
&= \operatorname{det}\left(B(t)\left[\begin{array}{l}
e_{1}(t) \\
e_{2}(t)
\end{array}\right] \cdot t\left(B(t)\left[\begin{array}{l}
e_{1}(t) \\
e_{2}(t)
\end{array}\right]\right)\right) \\
&=\operatorname{det}\left(B(t) \cdot{ }^{t}(B(t))\right) \\
&=\left(\frac{1}{\left|Z_{0}\right|^{4}}\left\{2\left(1-\cos \left(\left|Z_{0}\right| t\right)\right)-\left(1-\left|Z_{0}\right|^{2}\right)\left|Z_{0}\right| t \sin \left(\left|Z_{0}\right| t\right)\right\}\right)^{2} .
\end{aligned}
$$

Since

$$
\operatorname{det}(B(t))=\frac{1}{\left|Z_{0}\right|^{4}}\left\{2\left(1-\cos \left(\left|Z_{0}\right| t\right)\right)-\left(1-\left|Z_{0}\right|^{2}\right)\left|Z_{0}\right| t \sin \left(\left|Z_{0}\right| t\right)\right\} \geq 0
$$

we see that

$$
\begin{aligned}
& \sqrt{\operatorname{det}\left(<J_{i}(t), J_{j}(t)>\right)} \\
& =\frac{1}{\left|Z_{0}\right|^{4}}\left\{2\left(1-\cos \left(\left|Z_{0}\right| t\right)\right)-\left(1-\left|Z_{0}\right|^{2}\right)\left|Z_{0}\right| t \sin \left(\left|Z_{0}\right| t\right)\right\} .
\end{aligned}
$$

Let $u=\left(x_{1}, x_{2}, x_{3}\right) \in S^{2}$ and

$$
f\left(x_{3}, t\right)=\frac{1}{x_{3}^{4}}\left\{2\left(1-\cos \left(x_{3} t\right)\right)-\left(1-x_{3}^{2}\right) x_{3} t \sin \left(x_{3} t\right)\right\} .
$$

Then, we see that

$$
\operatorname{Vol}\left(B_{e}(R)\right)=\int_{S^{2}} \int_{0}^{R} f\left(x_{3}, t\right) d t d u .
$$

Since area element $d u$ on the sphere S^{2} is given by

$$
d u=\frac{1}{\sqrt{1-\left(x_{1}^{2}+x_{2}^{2}\right)}} d x_{1} d x_{2}
$$

we have that

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{e}(R)\right) \\
& \quad=2 \int_{D} \int_{0}^{R} f\left(\sqrt{1-\left(x_{1}^{2}+x_{2}^{2}\right)}, t\right) \frac{1}{\sqrt{1-\left(x_{1}^{2}+x_{2}^{2}\right)}} d t d x_{1} d x_{2},
\end{aligned}
$$

where

$$
D=\left\{\left(x_{1}, x_{2}\right) \mid x_{1}^{2}+x_{2}^{2} \leq 1\right\} .
$$

Changing the coordinates on D to polar coordinates, we have

$$
\operatorname{Vol}\left(B_{e}(R)\right)=4 \pi \int_{0}^{1} \int_{0}^{R} f\left(\sqrt{1-r^{2}}, t\right) \frac{r}{\sqrt{1-r^{2}}} d t d r .
$$

Replacing $x=\sqrt{1-r^{2}}$, we see that

$$
\operatorname{Vol}\left(B_{e}(R)\right)=4 \pi \int_{0}^{1} \int_{0}^{R} f(x, t) d t d x
$$

where

$$
f(x, t)=\frac{1}{x^{4}}\left\{2(1-\cos (x t))-\left(1-x^{2}\right) x_{3} t \sin (x t)\right\} .
$$

Since

$$
\int_{0}^{R} f(x, t) d t=\frac{2 R x+R x \cos (R x)-3 \sin (R x)}{x^{5}}+\frac{\sin (R x)-R x \cos (R x)}{x^{3}}
$$

we have that

$$
\begin{aligned}
& \operatorname{Vol}\left(B_{e}(R)\right) \\
& =4 \pi \int_{0}^{1} \int_{0}^{R} f(x, t) d t d x \\
& =4 \pi \int_{0}^{1}\left(\frac{2 R x+R x \cos (R x)-3 \sin (R x)}{x^{5}}+\frac{\sin (R x)-R x \cos (R x)}{x^{3}}\right) d x \\
& =4 \pi\left(R^{4} \int_{0}^{R} \frac{2 t+t \cos t-3 \sin t}{t^{5}} d t+R^{2} \int_{0}^{R} \frac{\sin t-t \cos t}{t^{3}} d t\right)
\end{aligned}
$$

By Lemma 3.3, we see that

$$
\begin{aligned}
\operatorname{Vol}(& \left.B_{e}(R)\right) \\
= & 4 \pi\left(R^{4} \int_{0}^{R} \frac{2 t+t \cos t-3 \sin t}{t^{5}} d t+R^{2} \int_{0}^{R} \frac{\sin t-t \cos t}{t^{3}} d t\right) \\
= & \frac{\pi}{6}\left\{-16 R+\left(R^{2}+6\right) \sin R+\left(R^{3}+10 R\right) \cos R\right. \\
& \left.\quad+\left(R^{4}+12 R^{2}\right) \int_{0}^{R} \frac{\sin t}{t} d t\right\}
\end{aligned}
$$

This completes the proof.

References

[1] J. Berndt, F. Tricerri, and L. Vanhecke, Geometry of generalized Heisenberg groups and their Damak-Ricci harmonic extensions, Comptes rendus de 1 academie des sciences serie i-mathematique, 318 (1994), no. 5, 471-476.
[2] P. Eberlein, Geometry of 2-step nilpotent Lie groups with a left invariant metric, Ann. Scient. Ecole Normale Sup. 27 (1994), no. 5, 611-660.
[3] S. Gallot, D. Hulin, and J. Lafontaine, Riemannian geometry, Springer-Verlag, Berlin, 1990.
[4] C. Jang, J. Kim, Y. Kim, and K. Park, Conjugate points on the quaternionic Heisenberg group, Jour. of Korean Math. Soc. 40 (2003), 61-72.
[5] C. Jang, J. Park, and K. Park, Geodesic spheres and balls of the Heisenberg groups, Commun. Korean Math. Soc. 25 (2010), 83-96.
[6] C. Jang and K. Park, Conjugate points on 2-step nilpotent groups, Geom. Dedicata, 79 (2000), 65-80.
[7] A. Kaplan, Riemannian nilmanifolds attached to clifford modules, Geom. Dedicata, 11 (1981), 127-136.
[8] A. Kaplan, On the geometry of groups of Heisenberg type, Bull. London Math. Soc. 15 (1983), 35-42.
[9] M. S. Raghunathan, Discrete subgroups of Lie groups, Springer-Verlag, 1972.
[10] G. Walschap, Cut and conjugate loci in two-step nilpotent Lie groups, Jour. of Geometric Analysis, 7 (1997), 343-355.
*
Department of Mathematics
University of Ulsan
Ulsan 44610, Republic of Korea
E-mail: sjudong@hanmail.net
**
Department of Mathematics
University of Ulsan
Ulsan 44610, Republic of Korea
E-mail: kpark@ulsan.ac.kr

