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GEODESIC SPHERES AND BALLS
OF THE HEISENBERG GROUPS

Changrim Jang, Jihye Park, and Keun Park

Abstract. Let H2n+1 be the (2n + 1)-dimensional Heisenberg group
equipped with a left-invariant metric. In this paper we study the Gaussian
curvatures of the geodesic spheres and the volumes of geodesic balls in
H2n+1.

1. Introduction

Let N be a 2-step nilpotent Lie algebra with an inner product 〈, 〉 and N
its unique simply connected 2-step nilpotent Lie group with the left invariant
metric induced by 〈, 〉 on N . Let Z be the center of N . Then N is represented
by the direct sum of Z and its orthgonal complement Z⊥.

For each Z ∈ Z, a skew symmetric linear transformation j(Z) : Z⊥ → Z⊥
is defined by j(Z)X = (adX)∗Z for X ∈ Z⊥. Or, equivalently,

〈j(Z)X,Y 〉 = 〈[X, Y ], Z〉
for all X, Y ∈ Z⊥.

A 2-step nilpotent Lie algebra N is said to be an algebra of Heisenberg type
if

j(Z)2 = −|Z|2 id
for all Z ∈ Z. And a Lie group N is said to be a group of Heisenberg type if
its Lie algebra N is of Heisenberg type. The classical Heisenberg groups are
examples of Heisenberg type.

The Heisenberg groups are examples of Heisenberg type. That is, let n ≥ 1
be any integer and {X1, . . . , Xn, Y1, . . . , Yn} a basis of R2n = V. Let Z be an
one dimensional vector space spanned by {Z}. Define

[Xi, Yi] = −[Yi, Xi] = Z

for any i = 1, 2, . . . , n with all other brackets are zero. Give on N = V ⊕Z the
inner product such that the set of vectors {Xi, Yi, Z | i = 1, 2, . . . , n} forms an
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orthonormal basis. Let N be the simply connected 2-step nilpotent group of
Heisenberg type which is determined by N and equipped with a left-invariant
metric induced by the inner product in N . The group N is called the (2n+1)-
dimensional Heisenberg group and denoted by H2n+1.

In this paper, we characterize the Gaussian curvature of the geodesic spheres
and the volumes of the geodesic balls on the Heisenberg group H2n+1:

Theorem A. Let 0 < R < 2π and Be(R) be the geodesic ball with center e
(identity element) and radius R in H2n+1. Then, the following holds.

V ol(Be(R)) ≤ R2n+1

2n + 1
V ol(S2n)

(
1 +

R2

12

)
.

Theorem B. Let 0 < R < 2π and Be(R) be the geodesic ball with center e
and radius R in H3. Then, the following holds.

V ol(Be(R)) = 4π

(
R3

3
+ 2

∞∑
n=2

(−1)n R2n+1

(2n + 1)!(2n− 1)(2n− 3)

)
.

Theorem C. Let 0 < R < 2π and Se(R) be the geodesic sphere with center
e and radius R in H2n+1. Let p = γ(R) ∈ Se(R), where γ(t) is a unit speed
geodesic with γ(0) = e and γ′(0) = X0 + Z0. Then, Gaussian curvature K(p)
in Se(R) is given as follows:

K(p) =
(
−1

4
+

|Z0|2(1− (1− |Z0|2) cos(|Z0|R))
2(1− cos(|Z0|R))− (1− |Z0|2)|Z0|R sin(|Z0|R)

)

×
(
−1

4
(|Z0|4 − |Z0|2 + 1) +

|Z0|2
2(1− cos(|Z0|R))

)n−1

.

2. Preliminaries

Let N be a 2-step nilpotent Lie algebra with an inner product 〈, 〉 and N be
its unique simply connected 2-step nilpotent Lie group with the left invariant
metric induced by 〈, 〉 on N . The center of N is denoted by Z. Then N can be
expressed as the direct sum of Z and its orthogonal complement Z⊥.

Recall that for Z ∈ Z, a skew symmetric linear transformation j(Z) : Z⊥ →
Z⊥ is defined by j(Z)X = (adX)∗Z for X ∈ Z⊥. Or, equivalently,

〈j(Z)X,Y 〉 = 〈[X, Y ], Z〉
for X, Y ∈ Z⊥. A 2-step nilpotent Lie group N is said to be of Heisenberg type
if

j(Z)2 = −|Z|2 id

for all Z ∈ Z.
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Let ∇ be the unique Riemannian connection on N . If ξ1, ξ2 and ξ3 are
left-invariant vector fields, then the formula of the covariant derivative

〈ξ3,∇ξ1ξ2〉 =
1
2
{ξ1〈ξ2, ξ3〉+ 〈ξ1, [ξ3, ξ2]〉+ ξ2〈ξ1, ξ3〉

+ 〈ξ2, [ξ3, ξ1]〉 − ξ3〈ξ2, ξ1〉 − 〈ξ3, [ξ2, ξ1]〉}
can be reduced to

〈ξ3,∇ξ1ξ2〉 =
1
2
{〈ξ1, [ξ3, ξ2]〉+ 〈ξ2, [ξ3, ξ1]〉 − 〈ξ3, [ξ2, ξ1]〉}.

Using this, the covariant derivatives on N are given as follows:

Lemma 2.1 ([3]). For a 2-step nilpotent Lie group N with a left invariant
metric, the following hold.

(1) ∇XY = 1
2 [X, Y ] for X, Y ∈ Z⊥.

(2) ∇XZ = ∇ZX = − 1
2j(Z)X for X ∈ Z⊥ and Z ∈ Z.

(3) ∇ZZ∗ = 0 for Z, Z∗ ∈ Z.

Let γ(t) be a curve in N such that γ(0) = e (identity element in N) and
γ′(0) = X0 + Z0, where X0 ∈ Z⊥ and Z0 ∈ Z. Since exp : N → N is
a diffeomorphism ([10]), the curve γ(t) can be expressed uniquely by γ(t) =
exp (X(t) + Z(t)] with

X(t) ∈ Z⊥ , X ′(0) = X0 , X(0) = 0

Z(t) ∈ Z , Z ′(0) = Z0 , Z(0) = 0 .

A. Kaplan ([7]) shows that the curve γ(t) is a geodesic in N if and only if

X ′′(t) = j(Z0)X ′(t),

Z ′(t) +
1
2
[X ′(t), X(t)] ≡ Z0.

The following lemma is useful in the later.

Lemma 2.2 ([3]). Let N be a simply connected 2-step nilpotent Lie group with
a left invariant metric, and let γ(t) be a geodesic of N with γ(0) = e and
γ′(0) = X0 + Z0, where X0 ∈ Z⊥ and Z0 ∈ Z. Then, one has

γ′(t) = dlγ(t)(X ′(t) + Z0), t ∈ R,

where X ′(t) = etj(Z0)X0 and lγ(t) is the left translation by γ(t).

Throughout this paper, different tangent spaces will be identified with N
via left translation. So, in above lemma, we can consider γ′(t) as

γ′(t) = X ′(t) + Z0 = etj(Z0)X0 + Z0.
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3. Main results

Let H2n+1 be the (2n+1)-dimensional Heisenberg group with a left invariant
metric and N its Lie algebra. Let γ(t) be a unit speed geodesic on H2n+1 with
γ(0) = e (the identity element of H2n+1) and γ′(0) = X0 +Z0, where X0 ∈ Z⊥
and Z0 ∈ Z. Assume that X0 6= 0 and Z0 6= 0. Since

{X0 + Z0,
|Z0|
|X0|X0 − |X0|

|Z0|Z0,
1

|Z0||X0|j(Z0)X0}

is an ortonormal set in N , we can obtain an orthonormal basis

B = {X0 + Z0,
|Z0|
|X0|X0 − |X0|

|Z0|Z0,
1

|Z0||X0|j(Z0)X0, Yk,
1
|Z0|j(Z0)Yk|Yk ∈ Z⊥,

k = 1, 2, . . . , n− 1}
by adding

{Yk,
1
|Z0|j(Z0)Yk|Yk ∈ Z⊥, k = 1, 2, . . . , n− 1}

to

{X0 + Z0,
|Z0|
|X0|X0 − |X0|

|Z0|Z0,
1

|Z0||X0|j(Z0)X0}.
Then, it is easy to show that [X0, Yk] = [X0, j(Z0)Yk] = 0 for each k =
1, 2, . . . , n− 1.

Proposition 3.1 ([1], [6]). Assume that X0 6= 0 and Z0 6= 0. If J(t) is a
normal Jacobi field along γ in H2n+1 with J(0) = 0, then

J(t) =(c1(sin(|Z0|t)− (1− |Z0|2)|Z0|t) + c2(1− cos(|Z0|t)))e1(t)

+ (c1|Z0|(cos(|Z0|t)− 1) + c2|Z0| sin(|Z0|t)e2(t)

+
n∑

k=2

[{c2k−1

|Z0| sin(|Z0|t) +
c2k

|Z0| (1− cos(|Z0|t))}e2k−1(t)

+ {c2k−1|Z0|(cos(|Z0|t)− 1) + c2k|Z0| sin(|Z0|t)}e2k(t)],

where c2k−1, c2k, k = 1, 2, . . . , n are arbitrary constants and e2k−1(t), e2k(t), k =
1, 2, . . . , n are given in Lemma 3.2.

Lemma 3.2. Assume that X0 6= 0 and Z0 6= 0. Let

e1(t) =
|Z0|
|X0|X

′(t)− |X0|
|Z0|Z0,

e2(t) =
1

|Z0||X0|j(Z0)X ′(t)

and let
e2k−1(t) = etj(Z0)Yk,

e2k(t) =
1
|Z0|e

tj(Z0)j(Z0)Yk for each k = 2, 3, . . . , n.
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Then, {γ′(t), e2k−1(t), e2k(t)|k = 1, 2, . . . , n} is an orthonormal frame along
γ(t) on H2n+1 such that

(1) ∇γ′(t)e1(t) = 1
2e2(t) and ∇γ′(t)e2(t) = − 1

2e1(t)
(2) ∇γ′(t)e2k−1(t) = |Z0|

2 e2k(t) and ∇γ′(t)e2k(t) = − |Z0|
2 e2k−1(t) for each

k = 2, 3, . . . , n.

Or simply, [
e′1(t)
e′2(t)

]
=

1
2

[
0 1
−1 0

] [
e1(t)
e2(t)

]

and [
e′2k−1(t)
e′2k(t)

]
=
|Z0|
2

[
0 1
−1 0

] [
e2k−1(t)
e2k(t)

]

for k = 2, 3, . . . , n.

The following proposition is a slight modification of Proposition 3.1, which
is useful.

Proposition 3.3. For each k = 1, 2, . . . , n, let J2k−1(t) and J2k(t) be the
Jacobi fields with J2k−1(0) = J2k(0) = 0, J ′2k−1(0) = e2k−1(0) and J ′2k(0) =
e2k(0). Then, we have that

(1) for k = 1, [
J1(t)
J2(t)

]
= B1(t)

[
e1(t)
e2(t)

]
,

where

B1(t) =
1

|Z0|3
[
sin(|Z0|t)− (1− |Z0|2)|Z0|t |Z0|(cos(|Z0|t)− 1)

|Z0|(1− cos(|Z0|t)) |Z0|2 sin(|Z0|t)
]

,

(2) for k = 2, 3, . . . , n
[
J2k−1(t)
J2k(t)

]
= Bk(t)

[
e2k−1(t)
e2k(t)

]
,

where

Bk(t) =

[
1
|Z0| sin(|Z0|t) |Z0|(cos(|Z0|t)− 1)

1
|Z0|3 (1− cos(|Z0|t)) 1

|Z0| sin(|Z0|t)

]
.

Proof. Let J(t) be a normal Jacobi field along γ(t) with J(0) = 0. Then, by
Proposition 3.1 and Lemma 3.2, we can represent J(t) as follow.

J(t) =
[
c1 c2 · · · c2n−1 c2n

]



B1(t) 0 · · · 0
0 B2(t) · · · 0
...

...
. . .

...
0 0 · · · Bn(t)







e1(t)
e2(t)

...
e2n−1(t)
e2n(t)




.
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Since Bk(0) = 0 and B′
k(0) = I for each k = 1, 2, . . . , n, we have that

J ′(0) = cle1(0) + c2e2(0) + · · ·+ c2n−1e2n−1(0) + c2ne2n(0).

Just letting J ′(0) = ek(0) for each k = 1, 2, . . . , 2n, we completes the proof. ¤

Corollary 3.4 ([1], [6]). Let H2n+1 be the (2n + 1)-dimensional Heisenberg
group and N its Lie algebra. Let γ(t) be a unit speed geodesic in N with
γ(0) = e (the identity element of N) and γ′(0) = X0 +Z0, where X0 ∈ Z⊥ and
Z0 ∈ Z.

(1) If Z0 6= 0, then all the conjugate points along γ are at t ∈ 2π
|Z0|Z

∗ ∪ A
where

Z∗ = {±1,±2, . . .}
and

A = {t ∈ R− {0}|(1− |Z0|2) |Z0|t
2

= tan
|Z0|t

2
}.

In particular, 2π
|Z0| is the first conjugate point of e along γ.

(2) If Z0 = 0, then there are no conjugate points along γ.

G. Walschap ([11]) showed that the first conjugate loci and the cut loci are
equal in the case of the groups of Heisenberg type or the 2-step nilpotent groups
with one-dimensional center.

So, we see that the geodesic sphere Se(r) with center e and radius r is
defined if and only if r ≤ 2π. So, we consider the geodesic spheres Se(r) and
the geodesic balls Be(r) with the radius r ≤ 2π.

Note that

det(B1(t)) =
1

|Z0|4 {2(1− cos(|Z0|t))− (1− |Z0|2)|Z0|t sin(|Z0|t)}

and

det(Bk(t)) =
2

|Z0|2 (1− cos(|Z0|t))

for each k = 2, 3, . . . , n.

Lemma 3.5 ([9]). For t ≥ 0, the following holds.

det(B1(t)) =
1

|Z0|4 {2(1− cos(|Z0|t))− (1− |Z0|2)|Z0|t sin(|Z0|t)} ≥ 0.

Lemma 3.6. For x > 0, the followings are hold.

(1) sin x
x ≤ 1.

(2) 1−cos x
x2 ≤ 1

2 .
(3) 2(1−cos x)−x sin x

x4 ≤ 1
12 .
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Proof. We give only the proof of (3) since others are easy. Let

f(t) =
1
12

x4 − {2(1− cos x)− x sin x}.
Then, we have that

f ′(x) =
1
3
x3 − (sinx− x cos x)

and
f ′′(x) = x(x− sin x).

Since f ′′(x) > 0 for x > 0 and f ′(0) = 0, we see that f ′(x) > 0. Since f(0) = 0,
we get that f(x) > 0 for x > 0. ¤

Let M be a Riemannian manifold with a metric g and p ∈ M. Take an
orthonormal basis {u1, u2, . . . , un} of TpM and let (x1, x2, . . . , xn) be the coor-
dinates determined by {u1, u2, . . . , un}. This local coordinate system is called
the normal coordinate system at p. It is easy to show that

∂

∂xi m

= (d expp)Pn
i=1 xiui

(ui),

where m = expp(
∑n

i=1 xiui). Then, the volume form vg on Up is given by

vg =

√
det

(
g(

∂

∂xi
,

∂

∂xj
)
)

dx1 ∧ dx2 ∧ · · · ∧ dxn,

where gij is the metric coefficients of g in Up. Therefore, the volume of the
geodesic ball Bp(r) is given by

V ol(Bp(r)) =
∫

exp−1
p (Bp(r))

exp∗p vg.

Let γ(t) be the unit speed geodesic in M with γ(0) = p, γ′(0) = u1 and let
Ji(t) be the Jacobi field with Ji(0) = 0 and J ′i(0) = ui for each i = 2, 3, . . . , n.
Then we know that

(d expp)tu1u1 = γ′(t)
and

(d expp)tu1ui =
1
t
Ji(t)

for each i = 2, 3, . . . , n. So, we see that
√

det
(

g(
∂

∂xi
,

∂

∂xj
)
)

= t−(n−1)
√

det(g(Ji(t), Jj(t))).

Hence, we have that

exp∗p vg = t−(n−1)
√

det(g(Ji(t), Jj(t)))dx1dx2 · · · dxn

=
√

det(g(Ji(t), Jj(t)))dtdu,
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where du denote the canonical measure of the unit sphere Sn−1. Therefore, by
Fubini’s Theorem we get that

V ol(Bp(r)) =
∫

Sn−1

∫ r

0

√
det(g(Ji(t), Jj(t)))dtdu.

Now we are ready to prove the following proposition which is concerned to
the volume of geodesic ball in the Heisenberg group H2n+1 with a left invariant
metric.

Theorem 3.7. Let 0 < R < 2π and Be(R) be the geodesic ball with center e
and radius R in H2n+1. Then, the following holds.

V ol(Be(R)) ≤ R2n+1

2n + 1
V ol(S2n)

(
1 +

R2

12

)
.

Proof. Using Propsition 3.3, we obtain that

det (〈Ji(t), Jj(t)〉)
=det (Ji(t) · Jj(t))

=det







J1(t)
J2(t)

...
J2n−1(t)
J2n(t)




[
J1(t) J2(t) · · · J2n−1(t) J2n(t)

]




=
n∏

k=1

det
(

Bk(t)
[
e2k−1(t)
e2k(t)

]
·t

(
Bk(t)

[
e2k−1(t)
e2k(t)

]))

=
n∏

k=1

det
(
Bk(t) ·t (Bk(t))

)

=
(

1
|Z0|4

{
2(1− cos(|Z0|t))− (1− |Z0|2)|Z0|t sin(|Z0|t)

} {
2

|Z0|2 (1− cos(|Z0|t))
}n−1

)2

.

So, by Lemma 3.5 and Lemma 3.6, we have that
√

det (〈Ji(t), Jj(t)〉))

=
1

|Z0|4 {2(1− cos(|Z0|t))− (1− |Z0|2)|Z0|t sin(|Z0|t)}
{

2
|Z0|2 (1− cos(|Z0|t))

}n−1

=
{

2(1− cos(|Z0|t))− |Z0|t sin(|Z0|t)
(|Z0|t)4 t4 +

sin(|Z0|t)
|Z0|t t2

}{
2(1− cos(|Z0|t))

(|Z0|t)2 t2
}n−1

≤
(

1
12

t4 + t2
)

t2n−2.
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Hence, we get that

V ol(Be(R)) =
∫

S2n

∫ R

0

√
det (〈Ji(t), Jj(t)〉)dtdu

≤ V ol(S2n)
∫ R

0

(
1
12

t4 + t2
)

t2n−2dt

= V ol(S2n)
(

R2n+3

12(2n + 3)
+

R2n+1

2n + 1

)

=
R2n+1

2n + 1
V ol(S2n)

(
1 +

2n + 1
12(2n + 3)

R2

)

≤ R2n+1

2n + 1
V ol(S2n)

(
1 +

R2

12

)
.

This completes the proof. ¤

Theorem 3.8. Let 0 < R < 2π and Be(R) be the geodesic ball with center e
and radius R in H3. Then, the following holds.

V ol(Be(R)) = 4π

(
R3

3
+ 2

∞∑
n=2

(−1)n R2n+1

(2n + 1)!(2n− 1)(2n− 3)

)
.

Proof. Let u = (x1, x2, x3) ∈ S2 and

f(x3, t) =
√

det (〈Ji(t), Jj(t)〉)

=
2(1− cos(x3t))− x3t sin(x3t)

(x3t)4
t4 +

sin(x3t)
x3t

t2.

Then, we see that

V ol(Be(R)) =
∫

S2

∫ R

0

f(x3, t)dtdu.

Let D = {(x1, x2)|x2
1 + x2

2 ≤ 1}, then since area element du on the sphere S2

is given by

du =
1√

1− (x2
1 + x2

2)
dx1dx2,

we have that

V ol(Be(R)) = 2
∫

D

∫ R

0

f(
√

1− (x2
1 + x2

2), t)
1√

1− (x2
1 + x2

2)
dtdx1dx2.

Changing the coordinates on D to polar coordinates, we have

V ol(Be(R)) = 4π

∫ 1

0

∫ R

0

f(
√

1− r2, t)
r√

1− r2
dtdr.
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Replacing x =
√

1− r2, we see that

V ol(Be(R)) = 4π

∫ 1

0

∫ R

0

f(x, t)dtdx,

where

f(x, t) =
2(1− cos(xt))− xt sin(xt)

(xt)4
t4 +

sin(xt)
xt

t2.

Since
sin(xt)

xt
=

∞∑
n=1

(−1)n−1 (xt)2n−2

(2n− 1)!

and
2(1− cos(xt))− xt sin(xt)

(xt)4

=
1

(xt)4

(
2
∞∑

n=1

(−1)n−1 (xt)2n

(2n)!
− xt

∞∑
n=1

(−1)n−1 (xt)2n−1

(2n− 1)!

)

=
∞∑

n=2

(−1)n−1

(
2

(2n)!
− 1

(2n− 1)!

)
(xt)2n−4,

we see that ∫ 1

0

sin(xt)
xt

dx =
∞∑

n=1

(−1)n−1 t2n−2

(2n− 1)!(2n− 1)

and
∫ 1

0

2(1− cos(xt))− xt sin(xt)
(xt)4

dx =
∞∑

n=2

(−1)n−1

2n− 3

(
2

(2n)!
− 1

(2n− 1)!

)
t2n−4.

Hence, we have that
∫ 1

0

f(x, t)dx

= t4
∫ 1

0

2(1− cos(xt))− xt sin(xt)
(xt)4

dx + t2
∫ 1

0

sin(xt)
xt

dx

= 2
∞∑

n=1

(−1)n

(2n)!(2n− 1)(2n− 3)
t2n.

Therefore, we see that

V ol(Be(R)) = 4π

∫ R

0

∫ 1

0

f(x, t)dxdt

= 8π

∞∑
n=1

(−1)n

(2n + 1)!(2n− 1)(2n− 3)
R2n+1.
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Or,

V ol(Be(R)) = 4π

(
R3

3
+ 2

∞∑
n=2

(−1)n

(2n + 1)!(2n− 1)(2n− 3)
R2n+1

)
.

¤
Let M̄ be a Riemannian manifold, M its Riemannian submanifold with

codimension 1, p ∈ M and a normal vector η to Tp(M). The shape operator

Sp : Tp(M) → Tp(M)

is defined by
Sp(x) = −(∇̄xN)T for any x ∈ Tp(M),

where N is a local extension of η normal to M and T denotes the tangential
component to Tp(M). It is easy to show that if η and its extension N are unit
vector and unit vector field, then the shape operator is given by

Sp(x) = −∇̄xN for any x ∈ Tp(M).

The shape operator Sp is symmetric, so there exists an orthonormal basis of
eigenvectors {e1, e2, . . . , en} with real eigenvalues λ1, λ2, . . . , λn. We say that
the ei are principal directions and λi are principal curvatures of M at p. The
determinant of shape operator

det(Sp) = λ1 × λ2 × · · · × λn

is called the Gaussian curvature.

Lemma 3.9 ([12]). Let M̄ be a Riemannian manifold, m ∈ M̄ and M the
geodesic sphere with center m and radius r > 0 and γ(t) be a unit speed geodesic
with γ(0) = m. Let J(t) be a Jacobi vector fields along γ with J(0) = 0, which
is normal to γ and Sp the shape operator of M at p = γ(r). Then, we have
that Sp(J(r)) = −J ′(r).

Using this lemma, we characterize the Gaussian curvatures on the geodesic
spheres of the Heisenberg group H2n+1.

Theorem 3.10. Let 0 < R < 2π and Se(R) be the geodesic sphere with center
e and radius R in H2n+1. Let p = γ(R) ∈ Se(R), where γ(t) is a unit speed
geodesic with γ(0) = e and γ′(0) = X0 + Z0. Then, Gaussian curvature K(p)
in Se(R) is given as follows:

K(p) =
(
−1

4
+

|Z0|2(1− (1− |Z0|2) cos(|Z0|R))
2(1− cos(|Z0|R))− (1− |Z0|2)|Z0|R sin(|Z0|R)

)

×
(
−1

4
(|Z0|4 − |Z0|2 + 1) +

|Z0|2
2(1− cos(|Z0|R))

)n−1

.

Proof. By Proposition 3.3, we know that[
J2k−1(t)
J2k(t)

]
= Bk(t)

[
e2k−1(t)
e2k(t)

]

for eack k = 1, 2, . . . , n.
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Since

[
J ′2k−1(t)
J ′2k(t)

]
= B′

k(t)
[
e2k−1(t)
e2k(t)

]
+ Bk(t)

[
e′2k−1(t)
e′2k(t)

]
,

by Lemma 3.2, we have that
[
J ′1(t)
J ′2(t)

]
= B′

1(t)
[
e1(t)
e2(t)

]
+ B1(t)

[
e′1(t)
e′2(t)

]

=
(

B′
1(t) +

1
2
B1(t)

[
0 1
−1 0

])[
e1(t)
e2(t)

]

and [
J ′2k−1(t)
J ′2k(t)

]
= B′

k(t)
[
e2k−1(t)
e2k(t)

]
+ Bk(t)

[
e′2k−1(t)
e′2k(t)

]

=
(

B′
k(t) +

|Z0|
2

Bk(t)
[

0 1
−1 0

])[
e2k−1(t)
e2k(t)

]

for each k = 2, 3, . . . , n.
Since [

e2k−1(t)
e2k(t)

]
= Bk(t)−1

[
J2k−1(t)
J2k(t)

]

for eack k = 1, 2, . . . , n, we have that
[
J ′1(t)
J ′2(t)

]
=

(
B′

1(t) +
1
2
B1(t)

[
0 1
−1 0

])
B1(t)−1

[
J1(t)
J2(t)

]

and [
J ′2k−1(t)
J ′2k(t)

]
=

(
B′

k(t) +
|Z0|
2

Bk(t)
[

0 1
−1 0

])
Bk(t)−1

[
J2k−1(t)
J2k(t)

]

for each k = 2, 3, . . . , n.
Since the shape operator Sγ(t) of the geodesic sphere Se(t) is given by

Sγ(t)(J(t)) = −J ′(t),

the Gaussian curvature Kγ(t) is

Kγ(t)

= det(Sγ(t))

=
det

(
B′

1(t) + 1
2B1(t)

[
0 1
−1 0

])

det(B1(t))
×

n∏

k=2

det
(
B′

k(t) + |Z0|
2 Bk(t)

[
0 1
−1 0

])

det(Bk(t))
.

Direct calculations give that

det
(
B′

1(t) + 1
2B1(t)

[
0 1
−1 0

])

det(B1(t))
= −1

4
+

|Z0|2(1− (1− |Z0|2) cos(|Z0|t))
2(1− cos(|Z0|t))− (1− |Z0|2)|Z0|t sin(|Z0|t)
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and

det
(
B′

k(t) + |Z0|
2 Bk(t)

[
0 1
−1 0

])

det(Bk(t))
= −1

4
(|Z0|4 − |Z0|2 + 1) +

|Z0|2
2(1− cos(|Z0|t)) .

Hence, the Gaussian curvatue Kp, p = γ(R) on the geodesic sphere Se(R) is
given by

K(p) =
(
−1

4
+

|Z0|2(1− (1− |Z0|2) cos(|Z0|R))
2(1− cos(|Z0|R))− (1− |Z0|2)|Z0|R sin(|Z0|R)

)

×
(
−1

4
(|Z0|4 − |Z0|2 + 1) +

|Z0|2
2(1− cos(|Z0|R))

)n−1

.
¤

By Lemma 3.5, we have that

Corollary 3.11 ([9]). Let 0 < R < 2π and Se(R) be the geodesic sphere with
center e and radius R in H3. Let p = γ(R) ∈ Se(R), where γ(t) is a unit speed
geodesic with γ(0) = e and γ′(0) = X0 + Z0. Then, Gaussian curvature K(p)
of Se(R) is given as follows:

K(p) = −1
4

+
|Z0|2(1− (1− |Z0|2) cos(|Z0|R))

2(1− cos(|Z0|R))− (1− |Z0|2)|Z0|R sin(|Z0|R)
.

In particular, the Gaussian curvatures of the geodesic spheres on the 3-dimen-
sional Heisenberg groups are greater than − 1

4 .

Remark 3.12. If |Z0| = 1, then Kp =
(
− 1

4 + 1
2(1−cos R)

)n

. So, we see that Kp

goes to ∞ if the radius R goes to 2π. And if |Z0| = 0, then since

lim
|Z0|→0

(
−1

4
+

|Z0|2(1− (1− |Z0|2) cos(|Z0|R))
2(1− cos(|Z0|R))− (1− |Z0|2)|Z0|R sin(|Z0|R)

)
= −1

4
+

6(2 + R2)
r2(12 + R2)

and

lim
|Z0|→0

|Z0|2
2(1− cos(|Z0|R))

=
1

R2
,

we see that

Kp =
(
−1

4
+

6(2 + R2)
R2(12 + R2)

)(
−1

4
+

1
R2

)n−1

.
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