• Title/Summary/Keyword: geochemical model

Search Result 64, Processing Time 0.027 seconds

The Mineralogy and Geochemistry of the Uppermost Sediments of the Lake Hovsgol, North Mongolia : It's Implication to the Paleoenvironmental Changes

  • Tumurhuu, D.;Narantsetseg, Ts.;Ouynchimeg, Ts.
    • The Korean Journal of Quaternary Research
    • /
    • v.18 no.2 s.23
    • /
    • pp.3-3
    • /
    • 2004
  • One short core with length of 146cm(HB-107, at coordinates of $N51^{\circ}$11'37.5";$E100^{\circ}$24'45.6", from 229m water depth was subject of the present study. The sub-samples of the core were analyzed for the water contents (WC%), biogenic silica, identification of the main phases, grain size distribution, geochemistry and some physical properties of sediment(Wet density and Magnetic susceptibility) with aims of recording palaeo-environmental changes in Northem Mongolia. The evaluation of the geochemical and mineralogical proxies on palaeo-climated and palaeo-environmental changes are based on comparison to the behvior of biogenic silica through core, as later one had been showed itself, as good indicator of the climate and environmental fluctuation. Age model of the investigating core based on previously C 14 dated core HB105 taken from the central part of the Hobsgol Lake and the result had been published elsewhere. The core consists of two litological varieties : upper diatomaceous silt, lower clay. According to the age model the upper diatomaceous silt formed during the Holocene, lower caly-during the late Pleistocene glacial period. The geochemistry and phase identification analysis on the core samples are resulted in determining main minerals that form the bottom sediments and their geochemistry. The main include quartz, felspar, muscovite, clinochlore, amphibole and carbonate phase(dolomite and calcite). Through the core not only occur the relative quantitative changes of the main phases, but also happen that the carbonate phase completely disappear in diatomaceous silt. This is believed to be related to the lake water salinity changes, which occurred during the trassition period from Pleistocene glacial-to the Holocene interglacial. These abrupt changes of the mineralogy have been clearly traced in geochemistry of sediments, specially in calcium concentration, which is high in lower clay and low in upper diatomaceous silt. That means, geochemistry and mineralogy of the bottom sediments can be used as proxy data on palaeo-climate and palaeo-environmental changes.

  • PDF

Thermodynamic Modelling of Blast Furnace Slag Blended Cement Composites (고로슬래그가 치환된 시멘트복합체의 열역학적 모델링)

  • Yang, Young-Tak;Cha, Soo-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.5 no.4
    • /
    • pp.488-495
    • /
    • 2017
  • In this study, we conducted the kinetic hydration modeling of OPC and the final product according to the substitution ratio of GGBS by using the geochemical code, GEMS, in order to calculate the thermodynamic equilibrium. The thermodynamic data was used by GEMS's 3rd party database, Cemdata18, and the cement hydration model, the Parrot & Killoh model was applied to simulate the hydration process. In OPC modeling, ion concentration of pore solution and hydration products by mass and volume were observed according to time. In the GGBS modeling, as the substitution rate increases, the amount of C-S-H, which contributes the long-term strength, increases, but the amount of Portlandite decreases, which leads to carbonation and steel corrosion. Therefore, it is necessary to establish prevention of some deterioration.

Gold-Silver Mineral Potential Mapping and Verification Using GIS and Artificial Neural Network (GIS와 인공신경망을 이용한 금-은 광물 부존적지 선정 및 검증)

  • Oh, Hyun-Joo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.13 no.3
    • /
    • pp.1-13
    • /
    • 2010
  • The aim of this study is to analyze gold-silver mineral potential in the Taebaeksan mineralized district, Korea using a Geographic Information System(GIS) and an artificial neural network(ANN) model. A spatial database considering Au and Ag deposit, geology, fault structure and geochemical data of As, Cu, Mo, Ni, Pb and Zn was constructed for the study area using the GIS. The 46 Au and Ag mineral deposits were randomly divided into a training set to analyze mineral potential using ANN and a test set to verify mineral potential map. In the ANN model, training sets for areas with mineral deposits and without them were selected randomly from the lower 10% areas of the mineral potential index derived from existing mineral deposits using likelihood ratio. To support the reliability of the Au-Ag mineral potential map, some of rock samples were selected in the upper 5% areas of the mineral potential index without known deposits and analyzed for Au, Ag, As, Cu, Pb and Zn. As the result, No. 4 of sample exhibited more enrichments of all elements than the others.

Development of User-friendly Modeling Interface for Process-based Total System Performance Assessment Framework (APro) for Geological Disposal System of High-level Radioactive Waste (고준위폐기물 심층처분시스템에 대한 프로세스 기반 종합성능평가 체계(APro)의 사용자 친화적 모델링 인터페이스 개발)

  • Kim, Jung-Woo;Lee, Jaewon;Cho, Dong-Keun
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.17 no.2
    • /
    • pp.227-234
    • /
    • 2019
  • A user-friendly modeling interface is developed for a process-based total system performance assessment framework (APro) specialized for a generic geological disposal system for high-level radioactive waste. The APro modeling interface is constructed using MATLAB, and the operator splitting scheme is used to combine COMSOL for simulation of multiphysics and PHREEQC for the calculation of geochemical reactions. As APro limits the modeling domain to the generic disposal system, the degree of freedom of the model is low. In contrast, the user-friendliness of the model is improved. Thermal, hydraulic, mechanical and chemical processes considered in the disposal system are modularized, and users can select one of multiple modules: "Default process" and multi "Alternative process". APro mainly consists of an input data part and calculation execution part. The input data are prepared in a single EXCEL file with a given format, and the calculation part is coded using MATLAB. The final results of the calculation are created as an independent COMSOL file for further analysis.

Geochemical and Structural Geological Approach for clarifying Stratigraphy of Quartzite in the Paju Area: an Application of Rare Earth Element and Nd Isotope in Stratigraphy (파주지역 규암의 층서관계 규명을 위한 지구화학적-구조지질학적 연구: 층서규명을 위한 희토류원소 분포도와 Nd 동위원소의 응용)

  • Koh Hee Jae;Lee Seung-Gu;Lee Byung-Joo
    • The Journal of the Petrological Society of Korea
    • /
    • v.14 no.2 s.40
    • /
    • pp.116-126
    • /
    • 2005
  • The Precambrian quartzite and calc-schist layers experienced multi-1310ing events are distributed along the two kinds of U-shaped 1310 (Fold I and II) with $N10^{\circ}E-directed$ fo1d axis in Wollong-myeon, Gwangtan-myeon, Jori-myeon of Paju city, the northeastern part of Gyeonggido. Occurrence of 10 layers of quartzite and 4 layers of calc-schist is not clear whether quartzite and schist layers were deposited sequentially each other or one to two layers of quartzite and schist were distributed repeatedly by isoclinal folding and thrusting, because of lack of sedimentary structures. In this paper, we tried to clarify the correlative relationship among the quartzite beds which are distributed along the U-shaped folds using geochemical tools such as rare earth element (REE) patterns and Nd isotope ratio. Quartzites have characteristics of LREE-flattened, HREE- slightly depleted patterns. They also show Ce negative anomaly whereas there are no Eu anomalies. As a result, quartzite beds occurred along the bilateral sides of fold axis show very similar REE patterns from outer side to inner side of 1314. The Nd model age of quartzite layers shows a trend that the inner part of fold is younger than the outer part of it. Such geochemical characteristics suggest that bilateral quartzite beds occurred along the fold axis were derived from the cogenetic source materials. The REE patterns and trace element geochemistry of mica schist intercalated within quartzite indicate that the quartzite and mica schist may be derived from different source materials. Our results suggest that REE and Nd isotope geochemistries may be very useful in clarifying the relationship of sedimentary deposits which do not show stratigraphical and structural connections in the field.

Geochemistry of Precambrian Metamorphic Rocks from Yongin-Anseong Area, the Southernmost Part of Central Gyeonggi Massif (경기육괴 중부 남단(용인-안성지역)에 분포하는 선캠브리아기 변성암류의 지구화학적 특징)

  • 이승구;송용선;증전창정
    • The Journal of the Petrological Society of Korea
    • /
    • v.13 no.3
    • /
    • pp.142-151
    • /
    • 2004
  • The metamorphic rocks of Yongin-Anseong area in Gyeonggi massif are composed of high-grade gneisses and schists which are considered as Precambrian basement, and Jurassic granite which intruded the metamorphic rocks. In this paper, we discuss the geochemical characteristics of metamorphic rocks and granites in this area based on REE and Nd isotope geochemistry. And we also discuss the petrogenetic relationship between metamorphic rocks and granites in this area. Most of Nd model ages (T$\_$DM/$\^$Nd/) from the metamorphic rocks range ca. 2.6Ga~2.9Ga which are correspond to the main crustal formation stage in Gyeonggi massif by Lee et. al. (2003). And Nd model ages show that the source material of quartzofeldspathic gneiss is slightly older than that of biotite banded gneiss. In chondrite-normalized rare earth element pattern, the range of (La/Yb)$\_$N/ value from biotite banded gneiss is 37~136, which shows sharp gradient and suggests that biotite banded gneiss was originated from a strongly fractionated source material. However, that of amphibolite is 4.65~6.64, which shows nearly flattened pattern. Particularly, the chondrite normalized REE patterns from the high-grade metamorphic rocks show the REE geochemisoy of original source material before metamorphism. In addition, the values of (La/Yb)$\_$N/ and Nd model ages of granite are 32~40 and 1.69Ga~2.08Ga, respectively, which suggest that the source material of granite is different from that of Precambrian basement such as biotite banded gneiss and quartzofeldspthic gneiss in the area.

Estimation of Spatial Distribution Using the Gaussian Mixture Model with Multivariate Geoscience Data (다변량 지구과학 데이터와 가우시안 혼합 모델을 이용한 공간 분포 추정)

  • Kim, Ho-Rim;Yu, Soonyoung;Yun, Seong-Taek;Kim, Kyoung-Ho;Lee, Goon-Taek;Lee, Jeong-Ho;Heo, Chul-Ho;Ryu, Dong-Woo
    • Economic and Environmental Geology
    • /
    • v.55 no.4
    • /
    • pp.353-366
    • /
    • 2022
  • Spatial estimation of geoscience data (geo-data) is challenging due to spatial heterogeneity, data scarcity, and high dimensionality. A novel spatial estimation method is needed to consider the characteristics of geo-data. In this study, we proposed the application of Gaussian Mixture Model (GMM) among machine learning algorithms with multivariate data for robust spatial predictions. The performance of the proposed approach was tested through soil chemical concentration data from a former smelting area. The concentrations of As and Pb determined by ex-situ ICP-AES were the primary variables to be interpolated, while the other metal concentrations by ICP-AES and all data determined by in-situ portable X-ray fluorescence (PXRF) were used as auxiliary variables in GMM and ordinary cokriging (OCK). Among the multidimensional auxiliary variables, important variables were selected using a variable selection method based on the random forest. The results of GMM with important multivariate auxiliary data decreased the root mean-squared error (RMSE) down to 0.11 for As and 0.33 for Pb and increased the correlations (r) up to 0.31 for As and 0.46 for Pb compared to those from ordinary kriging and OCK using univariate or bivariate data. The use of GMM improved the performance of spatial interpretation of anthropogenic metals in soil. The multivariate spatial approach can be applied to understand complex and heterogeneous geological and geochemical features.

Mineralogical and Geochemical Studies on Tourmaline in Felsite from the Daeduk Mountain, Daegu, South Korea (대구 대덕산 규장암체에서 산출되는 전기석에 대한 광물화학적 연구)

  • Woo, Hyeon Dong;Park, Seong Eun;Jang, Yun Deuk;Kim, Jung Jin
    • Journal of the Mineralogical Society of Korea
    • /
    • v.27 no.2
    • /
    • pp.85-95
    • /
    • 2014
  • The felsitic intrusives of Bulguksa granitic rocks of late Cretaceous in age are located at Mt. Daeduk, Daegu, where two different types of tourmalines are found. Two tourmalines show rounded and radiating in morphology and are found in separated region, but in same felsitic rocks. In this study, we investigate the chemical differences between two types of tourmaline and the effect of growing condition of the crystal on the its morphology. The rounded tourmaline has more amounts of Al and vacancy and less amounts of Ca, Na, K, Fe, Mn, Mg, which commonly occupy X and Y-site of the tourmaline. On the basis of the Diffusion-limited aggregation model, morphological irregularity indicates the active mobility of the magma. The radiating tourmaline, therefore, crystallized with active magma condition relatively, and the rounded tourmaline crystallized with stable magma condition created by decreasing temperature and the concentration of felsic components as the magma differentiate continually.

A Study on Temporal-Spatial Water Exchange Characteristics in Gamak Bay using a Method for Calculating Residence Time and Flushing Time (체류시간과 교체시간 계산을 통한 가막만의 시·공간적 해수교환 특성 연구)

  • Kim, Jin Ho;Lee, Won Chan;Hong, Sok Jin;Park, Jung Hyun;Kim, Chung Sook;Jung, Woo Sung;Kim, Dong-Myung
    • Journal of Environmental Science International
    • /
    • v.25 no.8
    • /
    • pp.1087-1095
    • /
    • 2016
  • The concepts of residence time and flushing time can be used to explain the exchange and transport of water or materials in a coastal sea. The application of these transport time scales are widespread in biological, hydrological, and geochemical studies. The water quality of the system crucially depends on the residence time and flushing time of a particle in the system. In this study, the residence and flushing time in Gamak Bay were calculated using the numerical model, EFDC, which includes a particle tracking module. The average residence time was 55 days in the inner bay, and the flushing time for Gamak Bay was about 44.8 days, according to the simulation. This means that it takes about 2 months for land and aquaculture generated particles to be transported out of Gamak Bay, which can lead to substances accumulating in the bay. These results show the relationships between the transport time scale and physical the properties of the embayment. The findings of this study will improves understanding of the water and material transport processes in Gamak Bay and will be important when assessing the potential impact of coastal development on water quality conditions.

A Geochemical Study of Gold Skarn Deposits at the Sangdong Mine, Korea (상동광산 금스카른광상의 지구화학적 연구)

  • Lee, Bu Kyung;John, Yong Won
    • Economic and Environmental Geology
    • /
    • v.31 no.4
    • /
    • pp.277-290
    • /
    • 1998
  • The purpose of this research is to investigate the dispersion pattern of gold during skarnization and genesis of gold mineralization in the Sangdong skarn deposits. The Sangdong scheelite orebodies are embedded in the Cambrian Pungchon Limestone and limestone interbedded in the Myobong Slate of the Cambrian age. The tungsten deposits are classified as the Hangingwall Orebody, the Main Orebody and the Footwall Orebody as their stratigraphic locations. Recently, the Sangdong granite of the Cretaceous age (85 Ma) were found by underground exploratory drillings below the orebodies. In geochemisty, the W, Mo, Bi and F concentrations in the granite are significantly higher than those in the Cretaceous granitoids in southern Korea. Highest gold contents are associated with quartz-hornblende skarn in the Main Orebody and pyroxene-hornblende skarn in the Hangingwall Orebody. Also Au contents are closely related to Bi contents. This could be inferred that Au skarns formed from solutions under reduced environment at a temperature of $270^{\circ}C$. According to the multiple regression analysis, the variation of Au contents in the Main Orebody can be explained (87.5%) by Ag, As, Bi, Sb, Pb, Cu. Judging from the mineralogical, chemical and isotope studies, the genetic model of the deposits can be suggested as follows. The primitive Sangdong magma was enriched in W, Mo, Au, Bi and volatiles (metal-carriers such as $H_2O$, $CO_2$ and F). During the upward movement of hydrothermal ore solution, the temperature was decreased, and W deposits were formed at limestone (in the Myobong Slate and Pungchon Limestone). In addition, meteoric water influx gave rise to the retrogressive alterations and maximum solubility of gold, and consequently higher grade of Au mineralization was deposited.

  • PDF