DOI QR코드

DOI QR Code

Thermodynamic Modelling of Blast Furnace Slag Blended Cement Composites

고로슬래그가 치환된 시멘트복합체의 열역학적 모델링

  • Yang, Young-Tak (Department of Civil.Environment Engineering, University of Ulsan) ;
  • Cha, Soo-Won (Department of Civil.Environment Engineering, University of Ulsan)
  • 양영탁 (울산대학교 건설환경공학과) ;
  • 차수원 (울산대학교 건설환경공학과)
  • Received : 2017.11.09
  • Accepted : 2017.11.16
  • Published : 2017.12.30

Abstract

In this study, we conducted the kinetic hydration modeling of OPC and the final product according to the substitution ratio of GGBS by using the geochemical code, GEMS, in order to calculate the thermodynamic equilibrium. The thermodynamic data was used by GEMS's 3rd party database, Cemdata18, and the cement hydration model, the Parrot & Killoh model was applied to simulate the hydration process. In OPC modeling, ion concentration of pore solution and hydration products by mass and volume were observed according to time. In the GGBS modeling, as the substitution rate increases, the amount of C-S-H, which contributes the long-term strength, increases, but the amount of Portlandite decreases, which leads to carbonation and steel corrosion. Therefore, it is necessary to establish prevention of some deterioration.

본 연구에서는 열역학적 평형을 이용한 OPC의 재령에 따른 운동학적 수화 생성물 모델링과 GGBS의 치환률에 따른 수화 생성물의 변화를 모델링하였다. 열역학 데이터는 GEMS의 3rd party 데이터베이스, Cemdata18을 사용하였고, 시멘트 수화 모델링은 Parrot & Killoh 모델을 적용하였다. OPC모델링에서 재령에 따라 Pore solution의 이온 농도와 수화 생성물의 질량 및 부피 변화를 관찰할 수 있었다. GGBS모델링에서는 치환률이 증가함에 따라 장기강도를 지배하는 C-S-H의 생성량은 증가하지만, 내구성에 영향을 미치는 Portlandite의 생성량이 감소하여 탄산화에 대한 대책이 필요할 것으로 판단된다.

Keywords

References

  1. Cl50, A.S.T.M. (2012). Standard Specification for Portland Cement.
  2. D. Kulik, GEMS-PSI 3.35, 2017, available at http://gems.web.psi.ch/, PSI-Villigen, Switzerland.
  3. Elakneswaran, Y., Owaki, E., Miyahara, S., Ogino, M., Maruya, T., Nawa, T. (2016). Hydration study of slag-blended cement based on thermodynamic considerations, Construction and Building Materials, 124, 615-625. https://doi.org/10.1016/j.conbuildmat.2016.07.138
  4. Lothenbach, B. (2010). Thermodynamic equilibrium calculations in cementitious systems, Materials and Structures, 43(10), 1413-1433. https://doi.org/10.1617/s11527-010-9592-x
  5. Lothenbach, B., Matschei, T., MMschner, G., Glasser, F.P.(2008a). Thermodynamic modelling of the effect of temperature on the hydration and porosity of portland cement, Cement and Concrete Research, 38(1), 1-18. https://doi.org/10.1016/j.cemconres.2007.08.017
  6. Lothenbach, B., Le Saout, G., Gallucci, E., Scrivener, K. (2008b). Influence of limestone on the hydration of portland cements, Cement and Concrete Research, 38(6), 848-860. https://doi.org/10.1016/j.cemconres.2008.01.002
  7. Lothenbach. B, Cemdata, avaliable at https://www.empa.ch/web/s308/cemdata, EMPA, Switzerland.
  8. Mehta, P.K. (1986). Concrete. Structure, Properties and Materials.
  9. Taylor, H.F. (1989). Modification of the bogue calculation, Advances in Cement Research, 2(6), 73-77. https://doi.org/10.1680/adcr.1989.2.6.73
  10. Thomas Matschei. (2007). Thermodynamics of Cement Hydration, Ph.D Thesis, Bauhaus University Weimar, Germany.