DOI QR코드

DOI QR Code

Development of User-friendly Modeling Interface for Process-based Total System Performance Assessment Framework (APro) for Geological Disposal System of High-level Radioactive Waste

고준위폐기물 심층처분시스템에 대한 프로세스 기반 종합성능평가 체계(APro)의 사용자 친화적 모델링 인터페이스 개발

  • Received : 2019.03.18
  • Accepted : 2019.05.17
  • Published : 2019.06.30

Abstract

A user-friendly modeling interface is developed for a process-based total system performance assessment framework (APro) specialized for a generic geological disposal system for high-level radioactive waste. The APro modeling interface is constructed using MATLAB, and the operator splitting scheme is used to combine COMSOL for simulation of multiphysics and PHREEQC for the calculation of geochemical reactions. As APro limits the modeling domain to the generic disposal system, the degree of freedom of the model is low. In contrast, the user-friendliness of the model is improved. Thermal, hydraulic, mechanical and chemical processes considered in the disposal system are modularized, and users can select one of multiple modules: "Default process" and multi "Alternative process". APro mainly consists of an input data part and calculation execution part. The input data are prepared in a single EXCEL file with a given format, and the calculation part is coded using MATLAB. The final results of the calculation are created as an independent COMSOL file for further analysis.

국내 고준위 방사성폐기물 심층처분시스템에 대한 프로세스 기반의 종합성능평가체계(APro) 개발을 위하여 사용자 편의성이 향상된 모델링 인터페이스를 구축하였다. APro의 모델링 인터페이스는 프로그래밍 언어인 MATLAB을 이용하여 구축되었고, 다중물리현상 모사가 가능한 COMSOL과 지화학반응 계산이 가능한 PHREEQC를 계산 엔진으로 활용하여 연산자분리 방식을 적용하였다. APro는 모델링 영역을 기존의 정형화된 처분시스템으로 제한함으로써 모델의 자유도는 낮지만, 사용자 편의성을 향상시켰다. 처분시스템에서 고려되는 주요 현상들을 모듈화하였고, 이를 "Default process"와 다수의 "Alternative process"로 구분하여 사용자가 선택할 수 있도록 함으로써 모델의 유연성을 높였다. APro는 크게 입력자료 부분과 계산실행 부분으로 구성된다. 기본 입력자료는 하나의 EXCEL 파일에 일정한 포맷으로 정리되고, 계산실행 부분은 MATLAB을 이용하여 코딩되었다. 최종적인 전체 계산 결과는 독립적인 COMSOL 파일 형태로 생성되도록 하여 COMSOL을 이용한 계산 결과의 후처리가 가능하도록 하였다.

Keywords

References

  1. GoldSim Technology Group, GoldSim: Probabilistic Simulation Environment, Ver. 11.1 User's Manual (2014).
  2. T. Ebashi, Y.S. Hwang, Y.M. Lee, T. Ohi, and S. Koo, "Application of the Comprehensive Sensitivity Analysis Method to a Korean Geological Disposal Concept", J. Nucl. Sci. Technol., 45(11), 1138-1149 (2008). https://doi.org/10.1080/18811248.2008.9711902
  3. J.W. Kim, D.K. Cho, and J. Jeong, "A Methodology for a Risk-Based Approach to Complex Scenarios in a Long-Term Safety Assessment of a Radioactive Waste Repository", Nucl. Eng. Des., 268, 58-63 (2014). https://doi.org/10.1016/j.nucengdes.2013.11.086
  4. J.W. Kim, D.K. Cho, N.Y. Ko, J. Jeong, and M.H. Baik, "Model Development for Risk-Based Safety Assessment of a Geological Disposal System of Radioactive Wastes Generated by Pyroprocessing of Pressurized Water Reactor Spent Fuel in Korea", Nucl. Technol., 203(1), 1-16 (2018). https://doi.org/10.1080/00295450.2018.1426331
  5. Nuclear Safety and Security Commission, General Standards for Deep Geological Disposal Facility of High-level Radioactive Waste, NSSC Notice No. 2017-74 (2017).
  6. D.K. Cho, N.Y. Ko, Y.K. Koh, J.S. Kwon, I.Y. Kim, J.W. Kim, J.H. Ryu, K.W. Park, C.K. Park, T.J. Park, M.H. Baik, S. Yoon, M. Lee, S.Y. Lee, J.K. Lee, J.O. Lee, J. Lee, C. Lee, S. Jung, J. Jeong, and S.H. Ji, A Safety Case of the Conceptual Disposal System for Pyro-processing High-Level Waste Based on the KURT Site (AKRS-16): VI. Models and Data, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-6732/2016 (2016).
  7. K.S. Kim, C.H. Kang, N.Y. Ko, Y.K. Koh, J.S. Kwon, G.Y. Kim, I.Y. Kim, J.W. Kim, J.S. Kim, J.H. Ryu, K.W. Park, C.K. Park, T.J. Park, D.S. Bae, M.H. Baik, S. Yoon, M. Lee, S.Y. Lee, Y.M. Lee, J.K. Lee, J.O. Lee, J. Lee, J. Lee, C. Lee, S. Jung, J. Jeong, D.K. Cho, W.J. Cho, S.H. Ji, Y.C. Choi, H.J. Choi, and P.S. Hahn, A Safety Case of the Conceptual Disposal System for Pyro-processing High-Level Waste Based on the KURT Site (AKRS-16): Safety Case Synthesis, Korea Atomic Energy Research Institute Technical Report, KAERI/TR-6726/2016 (2016).
  8. R.T. Mills, C. Lu, P.C. Lichtner, and G.E. Hammond, "Simulating Subsurface Flow and Transport on Ultrascale Computers using PFLOTRAN", J. Phys.: Conf. Ser., 78, 012051 (2007). https://doi.org/10.1088/1742-6596/78/1/012051
  9. G.E. Hammond, P.C. Lichtner, and R.T. Mills, "Evaluating the Performance of Parallel Subsurface Simulators: An illustrative example with PFLOTRAN", Water Resour. Res., 50, 208-228 (2014). https://doi.org/10.1002/2012WR013483
  10. P. Trinchero, I. Puigdomenech, J. Molinero, H. Ebrahimi, B. Gylling, U. Svensson, D. Bosbach, and G. Deissmann, "Continuum-based DFN-consistent Numerical Framework for the Simulation of Oxygen Infiltration into Fractured Crystalline Rocks", J. Contam. Hydrol., 200, 60-69 (2017). https://doi.org/10.1016/j.jconhyd.2017.04.001
  11. A. Nardi, A. Idiart, P. Trinchero, L.M. de Vries, and J. Molinero, "Interface COMSOL-PHREEQC (iCP), an Efficient Numerical Framework for the Solution of Coupled Multiphysics and Geochemistry", Comput. Geosci., 69, 10-21 (2014). https://doi.org/10.1016/j.cageo.2014.04.011
  12. COMSOL, Comsol Multiphysics, Ver. 5.3a Reference Manual (2017).
  13. D.L. Parkhurst and C.A.J. Appelo, Description of Input and Examples for PHREEQC Version 3 : A Computer Program for Speciation, Batch-Reaction, One-Dimensional Transport, and Inverse Geochemical Calculations, U.S. Geol. Surv. Techniques and Methods, book 6, Chap. A43, 497 (2013).
  14. MathWorks Inc., MATLAB R2015a (2015).
  15. S.R. Charlton and D.L. Parkhurst, "Modules Based on the Geochemical Model PHREEQC for Use in Scripting and Programming Languages", Comput. Geosci., 37(10), 1653-1663 (2011). https://doi.org/10.1016/j.cageo.2011.02.005
  16. J. Carrayrou, R. Mose, and P. Behra, "Operator-splitting Procedures for Reactive Transport and Comparison of Mass Balance Errors", J. Contam. Hydrol., 68(3-4), 239-268 (2004). https://doi.org/10.1016/S0169-7722(03)00141-4