• Title/Summary/Keyword: geochemical analysis

Search Result 301, Processing Time 0.028 seconds

Detection of Sea-water Intrusion Caused by Tidal Action Using DC Resistivity Monitoring (전기비저항 모니터링을 이용한 해수침투 파악)

  • Hwang, Hak-Soo;Lee, Sang-Kyu;Ko, Dong-Chan;Kim, Yang-Soo;Park, In-Hwa
    • Geophysics and Geophysical Exploration
    • /
    • v.3 no.1
    • /
    • pp.1-6
    • /
    • 2000
  • The 1 $km^2$ area studied is located in Sukchun-ri, Hwasung-koon, the southern part of Kyeonggi-do. Even though this site has been known as a contaminated area caused by seawater intrusions, geophysical and geochemical surveys have never been carried out at the site to determine the extent of the seawater contamination and to investigate whether the seawater intrusion is in progress. The purpose of this study is to determine the extent of seawater contamination and a preferred channel of the seawater intrusion using geophysical methods such as DC resistivity surveys with Schlumberger array and a dipole-dipole array. In order to determine whether the seawater intrusion is in progress in the area, DC resistivity monitoring with Schlumberger array was performed. According to the resistivity map obtained from the inversion of the resistivity data measured with Schlumberger array, the study area is divided into two districts as relatively lowly resistive (less than 30 ohm-m) and highly resistive (more than 30 ohm-m) areas. The distribution of the lowly resistive area is consistent with the distribution of the layer composed of clay minerals, and the resistivity of this layer decreases slowly as approaching to the old seashore. Hydrogeological analysis shows that the clay layer within a distance of about 200 m from the seashore has been already contaminated by sea-water and its electric conductivity is 8 times higher than that of the sand layer covered by the clay layer. According to the results of the 2-dimensional DC resistivity surveys with a dipole-dipole array, there are two preferred channels of the seawater intrusion in the site, and both the channels are in the NW-SE direction from the old seashore. The lowly resistive zone in the southern channel extends to a depth of 80 m. The DC resistivity monitoring with Schlumberger array was carried out along the preferred channel which has the low resistivity Bone (fracture zone) that extended to a depth of 80 m. The time series of apparent resistivity, measured at a distance of 260 m from the old coast line, fluctuates with a period of 12 hours. From these observations, it can be concluded that the seawater intrusion caused by tidal action is still in progress along the fractured zone interpreted by the DC resistivity surveys with a dipole-dipole array.

  • PDF

Seismic study of the Ulleung Basin crust and its implications for the opening of the East Sea (탄성파 탐사를 통해 본 울릉분지의 지각특성과 동해형성에 있어서의 의미)

  • Kim, Han Jun
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.9-26
    • /
    • 1999
  • The Ulleung Basin (Tsushima Basin) in the southwestern East Sea (Japan Sea) is floored by a crust whose affinity is not known whether oceanic or thinned continental. This ambiguity resulted in unconstrained mechanisms of basin evolution. The present work attempts to define the nature of the crust of the Ulleung Basin and its tectonic evolution using seismic wide-angle reflection and refraction data recorded on ocean bottom seismometers (OBSs). Although the thickness of (10 km) of the crust is greater than typical oceanic crust, tau-p analysis of OBS data and forward modeling by 2-D ray tracing suggest that it is oceanic in character: (1) the crust consists of laterally consistent upper and lower layers that are typical of oceanic layers 2 and 3 in seismic velocity and gradient distribution and (2) layer 2C, the transition between layer 2 and layer 3 in oceanic crust, is manifested by a continuous velocity increase from 5.7 to 6.3 km/s over the thickness interval of about 1 km between the upper and lower layers. Therefore it is not likely that the Ulleung Basin was formed by the crustal extension of the southwestern Japan Arc where crustal structure is typically continental. Instead, the thickness of the crust and its velocity structure suggest that the Ulleung Basin was formed by seafloor spreading in a region of hotter than normal mantle surrounding a distant mantle plume, not directly above the core of the plume. It seems that the mantle plume was located in northeast China. This suggestion is consistent with geochemical data that indicate the influence of a mantle plume on the production of volcanic rocks in and around the Ulleung Basin. Thus we propose that the opening models of the southwestern East Sea should incorporate seafloor spreading and the influence of a mantle plume rather than the extension of the crust of the Japan Arc.

  • PDF

The Chemistry and Origin of Amphibolitic Rocks in the Sobaegsan Metamorphic Belt and the Ogbang and Sangdong Tungsten Mine Areas, Korea (소백산변성대(小白山變成帶)와 옥방(玉房) 및 상동중석광상내(上東重石鑛床內)의 각섬석질암(角閃石質岩)의 지화학(地化學) 및 성인(成因)에 관(關)한 연구(硏究))

  • So, Chil-Sup;Kim, Sang-Myeong
    • Economic and Environmental Geology
    • /
    • v.8 no.3
    • /
    • pp.147-164
    • /
    • 1975
  • 19 amphibolite samples from the Precambrian Sobaegsan metamorphic belt including the Ogbang mine amphibolites were analyzed for 24 elements each, by wet chemical and emission spectroscopic methods. All the chemical data were evaluated by the methods outlined by Evans and Leake(1960) and Leake(1964) and by Shaw and Kudo(1965). The chemical similarity of all the studied rocks analyzed to basic igneous rocks is consistently indicated particularly by trace element abundance and variation trends. Petrography and oxidation ratios were also considered in attempting to determine the nature of the parent rocks. 3 analyses of W-bearing mafic metamorphic rocks from Sangdong area of the Ogcheon geosynclinal zone are also presented and discussed. Geochemical data for these latter rocks have been possibly derived from mafic tuffs deposited in an area of carbonate deposition.

  • PDF

Geomicrobiological Behavior of Heavy Metals in Paddy Soil Near Abandoned Au-Ag Mine Supplied with Carbon Sources (탄소원을 공급한 폐금은광산 주변 논토양 내 중금속의 지구미생물학적 거동 연구)

  • Ko, M.S.;Lee, J.U.;Park, H.S.;Shin, J.S.;Bang, K.M.;Chon, H.T.;Lee, J.S.;Kim, J.Y.
    • Economic and Environmental Geology
    • /
    • v.42 no.5
    • /
    • pp.413-426
    • /
    • 2009
  • The study was conducted to investigate the effects of indigenous bacteria on geochemical behavior of toxic heavy metals in contaminated paddy soil near an abandoned mine. The effects of sulfate amendment to stimulate microbial sulfate reduction on heavy metal behaviors were also investigated. Batch-type experiments were performed with lactate or glucose as a carbon source to activate indigenous bacteria in the soil under anaerobic condition for 100 days. Sulfate (250 mg/L) was artificially injected at 60 days after the onset of the experiments. In the case of glucose supply, solution pH increased from 4.8 to 7.6 while pH was maintained at 7~8 in the lactate solution. The initial low pH in the case of glucose supply likely resulted in the enhanced extraction of Fe and most heavy metals at the initial experimental period. Lactate supply exerted no significant difference on the amounts of dissolved Zn, Pb, Ni and Cu between microbial and abiotic control slurries; however, lower Zn, Pb and Ni and higher Cu concentrations were observed in the microbial slurries than in the controls when glucose supplied. Sulfate amendment led to dramatic decrease in dissolved Cr and maintenance of dissolved As, both of which had gradually increased over time till the sulfate injection. Black precipitates formed in solution after sulfate amendment, and violarite($Fe^{+2}{Ni^{+3}}_2S_4$) was found with XRD analysis in the microbial precipitates. Conceivably the mineral might be formed after Fe(III) reduction and microbial sulfate reduction with coprecipitation of heavy metal. The results suggested that heavy metals which can be readily extracted from contaminated paddy soils may be stabilized in soil formation by microbial sulfate reduction.

Microbial Leaching of Iron from Shinyemi Magnetite Ore (미생물을 이용한 신예미 자철광으로부터 철 침출에 관한 연구)

  • Roh, Yul;Oh, Jong-Min;Suh, Yong-Jae;Jang, Hee-Dong
    • Journal of the Mineralogical Society of Korea
    • /
    • v.20 no.4
    • /
    • pp.357-366
    • /
    • 2007
  • Microorganisms participate in a variety of geochemical processes such as weathering and formation of minerals, leaching of precious metals from minerals, and cycling of organic matter The objective of this study was to investigate biogeochemical processes of iron leaching from magnetite ore by iron-reducing bacteria isolated from intertidal flat sediments, southwestern part of Korea. Microbial iron leaching experiments were performed using magnetite ore, Shinyemi magnetite ore, in well-defined media with and without bacteria at room temperature for a month. Water soluble Fe and Mn during the leaching experiments were determined by ICP analysis of bioleached samples, and the resulting precipitated solids were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The extent of iron leaching from magnetite in the aerobic conditions (Fe = 15 mg/L and Mn = 3.41 mg/L) was lower than that in the anaerobic environments (Fe = 32.8 mg/L and Mn = 5.23 mg/L). The medium pH typically decreased from 8.3 to 7.2 during a month incubation. The Eh of the initial medium decreased from +144.9 mV to -331.7 mV in aerobic environments and from -2.3 mV to -494.6 mV in anaerobic environments upon incubation with the metal reducing microorganisms. The decrease in pH is due to glucose fermentation producing organic acids and $CO_2$. The ability of bacteria to leach soluble iron from crystalline magnetite could have significant implications for biogeochemical processes in sediments where Fe(III) in magnetite represents the largest pool of electron acceptor as well as to use as a novel biotechnology for leaching precious and heavy metals from raw materials.

Pseudotachylyte Developed in Granitic Gneiss around the Bulil Waterfall in the Jirisan, SE Korea: Its Occurrence and Characteristics (지리산 불일폭포 일원의 화강암질편마암에 발달한 슈도타킬라이트: 산상과 특성)

  • Kang, Hee-Cheol;Kim, Chang-Min;Han, Raehee;Ryoo, Chung-Ryul;Son, Moon;Lee, Sang-Won
    • The Journal of the Petrological Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.157-169
    • /
    • 2019
  • Pseudotachylytes, produced by frictional heating during seismic slip, provide information that is critical to understanding the physics of earthquakes. We report the results of occurrence, structural characteristics, scanning electron microscopic observation and geochemical analysis of pseudotachylytes, which is presumed to have formed after the Late Cretaceous in outcrops of the Paleoproterozoic granitic gneiss on the Bulil waterfall of the Jirisan area, Yeongnam massif, Korea. Fault rocks, which are the products of brittle deformation under the same shear stress regime in the study area, are classified as pseudotachylyte and foliated cataclasite. The occurrences of pseudotachylyte identified on the basis of thickness and morphology are fault vein-type and injection vein-type pseudotachylyte. A number of fault vein-type pseudotachylytes occur as thin (as thick as 2 cm) layers generated on the fault plane, and are cutting general foliation and sheared foliation developed in granitic gneiss. Smaller injection vein-type pseudotachylytes are found along the fault vein-type pseudotachylytes, and appear in a variety of shapes based on field occurrence and vein geometry. At a first glance fault vein-type seudotachylyte looks like a mafic vein, but it has a chemical composition almost identical to the wall rock of granitic gneiss. Also, it has many subrounded clasts which consist predominantly of quartz, feldspar, biotite and secondary minerals including clay minerals, calcite and glassy materials. Embayed clasts, phenocryst with reaction rim, oxide droplets, amygdules, and flow structures are also observed. All of these evidences indicate the pseudotachylyte formed due to frictional melting of the wall rock minerals during fault slip related to strong seismic faulting events in the shallow depth of low temperature-low pressure. Further studies will be conducted to determine the age and mechanical aspect of the pseudotachylyte formation.

Sedimentary Environmental Change and the Formation Age of the Damyang Wetland, Southwestern Korea (한국 남서부 담양습지의 퇴적환경 변화와 형성시기 연구)

  • Shin, Seungwon;Kim, Jin-Cheol;Yi, Sangheon;Lee, Jin-Young;Choi, Taejin;Kim, Jong-Sun;Roh, Yul;Huh, Min;Cho, Hyeongseong
    • Journal of the Korean earth science society
    • /
    • v.42 no.1
    • /
    • pp.39-54
    • /
    • 2021
  • Damyang Wetland, a riverine wetland, has been designated as the first wetland protection area in South Korea and is a candidate area for the Mudeungsan Area UNESCO Global Geopark. The Damyang Wetland area is the upstream part of the Yeongsan River and is now a relatively wide plain. To reconstruct the sedimentary environment around the Damyang Wetland, core samples were obtained, and sedimentary facies analysis, AMS and OSL age dataings, grain size, and geochemical analyses were carried out. In addition, comprehensive sedimentary environment changes were reconstructed using previous core data obtained from this wetland area. In the Yeongsan River upstream area, where the Damyang Wetland is located, fluvial terrace deposits formed during the late Pleistocene are distributed in an area relatively far from the river. As a gravel layer is widely distributed throughout the plains, Holocene sediments were likely deposited in a braided river environment when the sea level stabilized after the middle Holocene. Then, as the sedimentary environment changed from a braided river to a meandering river, the influx of sand-dominated sediments increased, and a floodplain environment was formed around the river. In addition, based on the pollen data, it is inferred that the climate was warm and humid around 6,000 years ago, with wetland deposits forming afterward. The the trench survey results of the river area around the Damyang Wetland show that a well-rounded gravel layer occurs in the lower part, covered by the sand layer. The Damyang Wetland was likely formed after the construction of Damyang Lake in the 1970s, as muddy sediments were deposited on the sand layer.

Initial Evaluation using Geochemical Data to infer Tectonic Setting of Mt. Baekdu/Changbaishan Volcano (백두산 화산의 지체구조 추론을 위한 지구화학적 데이터를 이용한 기초 평가)

  • Yun, Sung-Hyo;Chang, Cheolwoo;Pan, Bo
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.128-139
    • /
    • 2022
  • This study aimed to investigate the tectonic setting of the volcanic edifice at Mt. Baekdu by analyzing petrochemical characteristics of Holocene felsic volcanic rocks distributed in the Baekdusan stratovolcano edifice and summit of the Cheonji caldera rim, as well as Pleistocene mafic rocks of the Gaema lava plateau and Changbaishan shield volcano edifice. During the early eruption phases, mafic eruption materials, with composition ranging from alkali basalt to trachybasalt, or from subalkaline (tholeiitic) basalt to basaltic andesite formed the Gaema lava plateau and Changbaishan shield volcanic edifice, whereas the Baekdusan stratovolcano edifice and Holocene tephra deposits near the summit of the Cheonji caldera comprises trachytic and rhyolitic compositions. Analysis results revealed bimodal compositions with a lack of 54-62 SiO2, between the felsic and mafic volcanic rocks. This suggested that magmatic processes occurred at the locations of extensional tectonic settings in the crust. Mafic volcanic rocks were plotted in the field of within-plate volcanic zones or between within-plate alkaline and tholeiite zones on the tectonic discrimination diagram, and it was in good agreement with the results of the TAS diagram. Felsic volcanic rocks were plotted in the field of within-plate granite tectonic settings on discrimination diagrams of granitic rocks. None of the results were plotted in the field of arc islands or continental margin arcs. The primitive mantle-normalized spider diagram did not show negative (-) anomalies of Nb and Ti, which are distinctive characteristics of subduction-related volcanic rocks, but exhibited similar patterns of ocean island basalt. Trace element compositions showed no evidence of, magmatic processes related to subduction zones, indicating that the magmatic processes forming the Baekdusan volcanic field occurred in an intraplate environment. The distribution of shallow earthquakes in this region supports the results. The volcanic rocks of the Baekdusan volcanic field are interpreted as the result of intraplate volcanism originating from the upwelling of mantle material during the Cenozoic era.

Characteristics and Controlling Factors on Nickel Laterite Deposits in Sulawesi, Indonesia (인도네시아 술라웨시 니켈 라테라이트 광상의 특성과 광화 규제 요인)

  • Younggi Choi;Byounghan Kim
    • Economic and Environmental Geology
    • /
    • v.56 no.3
    • /
    • pp.343-363
    • /
    • 2023
  • Sulawesi island, as a global producer of nickel resources, is leading the rapid growth of nickel industry of Indonesia. Nickel laterite deposits in Sulawesi was formed by lateritization of the world-scale East Sulawesi Ophiolite (ESO) under the active tectonic setting and tropical rainforest climate. In this paper, exploration cases for nickel laterite deposits in five regions of Sulawesi are reported. Regional characteristics on nickel laterite deposits in Sulawesi are understood based on various exploration activities such as outcrop, trench and pit survey, petrological observation, geochemical analysis, and interpretation of drilling data, etc.. In the northeastern part of 'Southeast-Arm', which is a strategic location for nickel industry of Indonesia, ESO is extensively exposed to the surface. In the Morombo and Morowali regions, typical high-grade saprolite-type orebodies with a thickness of 10 to 20 m occur. The cases showed that topographic relief tends to regulate Ni-grade distribution and orebody thickness, and that high grade intervals tend to occur in places where joints and garnierite veins are dense. In the Tinanggea and South Palangga regions in the southern part of the Southeast-Arm, overburden composed of Neogene to Quaternary deposits is a major factor affecting the preservation and profitability of nickel laterite deposits. Despite the overburden, high-grade saprolite-type orebodies composed of Ni-bearing serpentine with garnierite veins occur in a thickness of around 10 m to secure economic feasibility. In contrast, in the Ampana region in the northern part of 'East-Arm', low-grade nickel laterite deposits with immature laterite profile was identified, which is thought to be the result of active denudation due to tectonic uplift. Exploration cases in this paper will help to understand characteristics and controlling factors on nickel laterite deposits in Sulawesi, Indonesia.

Macrobenthic Community Structure during Spring and Summer Season in the Environmental Conservation Area, Korea (환경보전해역에 서식하는 대형저서동물의 춘계와 하계의 군집구조)

  • Choi, Byoung-Mi;Yun, Jae Seong;Kim, Seong Gil;Kim, Seong-Soo;Choi, Ok In;Son, Min Ho;Seo, In-Soo
    • Journal of Marine Life Science
    • /
    • v.1 no.2
    • /
    • pp.95-108
    • /
    • 2016
  • This study was performed to investigate the community structure of macrobenthic assemblages in the Environmental Conservation area, Korea. Benthic animals were collected by van Veen grab sampler at spring (May) and summer (August) 2009. The total species number and mean density were 195 species 5.6 m-2 and 667 individuals m-2, respectively. Polychaetes were the most dominant faunal group in species (96 species) and abundance (431 individuals m-2). The major dominant species were the polychaetes Lumbrineris longifolia (76±224 individuals m-2), Mediomastus californiensis (42±117 individuals m-2), Tharyx sp.3 (26±110 individuals m-2), the bivalvia Theora fragilis (54±78 individuals m-2) and the amphipod Eriopisella schellensis (70±146 individuals m-2). Based on the cluster and nMDS ordination analysis, macrobenthic communities were divided into three faunal groups. The first group was characterized by high abundance of the polychaeta Sternaspis scutata and the amphipod Ampelisca cyclops iyoensis, which is located by most stations of Hampyeong Bay and St. 4 of Deungnyang Bay. The second group was numerically dominated by the polychaeta Capitella capitata at St. 4 and St. 5 in Gamak Bay where was most pollutant area. Finally, the third group was dominated by the polychaetes Heteromastus filiformis, Tharyx sp.3 and the amphipod Sinocorophium sinensis. Therefore, geochemical characteristics such as the bay shape and pollution gradient may be important factors controlling of the macrobenthic community structure in Environment Conservation Area.