• Title/Summary/Keyword: geo-material

Search Result 337, Processing Time 0.028 seconds

A Study on the Ring Deflection According to Compaction of Buried Polyethylene Pipes (지중매설 폴리에틸렌관의 다짐도에 따른 관변형 연구)

  • Seungcheol Baek;Seungwook Kim;Byounghan Choi;Sunhee Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.10
    • /
    • pp.5-10
    • /
    • 2024
  • Flexible pipes have the property of resisting external loads by utilizing the rigidity of the pipe and the surrounding ground, and have recently been in the spotlight because they are lighter in weight and have excellent durability compared to concrete pipes. In this study, the behavior characteristics of buried polyethylene pipe, a representative flexible pipe, were examined. Double-walled and multi-walled polyethylene pipes were used, and the structural behavior of the polyethylene pipe was evaluated based on a 5% deflection of the pipe diameter suggested in the design standards for flexible pipes. For the polyethylene pipe, the material properties of the pipe were identified through a ring stiffness test, and the behavior characteristics in the ground were reviewed through the simulation experiment of the buried polyethylene pipes. In addition, a finite element analysis model was developed based on the results of underground burial simulation experiments, and the behavior characteristics of polyethylene pipes according to backfill conditions were evaluated using the developed finite element analysis model and design equation. As a result of the study, it was confirmed that the capacity of the pipes and the compaction of the backfill are the main factors that determine the structural performance of the buried polyethylene pipe.

An Experimental Study on the Dynamic Behavioral Characteristics of Bottom Ash (석탄회의 동적거동 특성에 대한 실험 연구)

  • Yoon, Won-Sub;Han, Jae-Woon;Shin, Seoung-Gu;Chae, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.1142-1150
    • /
    • 2010
  • An elementary particle of bottom ash is similar to fine sand. So which expected from replace expensive sand. Therefore, this study conducts cyclic triaxial test and a resonant test using relative density, which is obtained from a relative density test of bottom ash and standard sand. Also, it compares antiseismic characteristics of bottom ash and standard sand in order to analyze the possibility of commercial use as a construction material.

  • PDF

A Study on the Development of Knowldege-based Computer Aided Manufacturing System for Mold Manufacturing(1) -On the modelling of feature based model and database processing with knowledge- (금형 가공용 지식기반 CAM 시스템의 개발에 관한연구 (1) -특징 형상 모델링 및 짓기 베이스화에 관하여 -)

  • 정재현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.622-629
    • /
    • 1999
  • This paper presents the development of an interactive knowledge-based CAM system for design-ing and manufacturing the mold. The system is composed of two functional parts. One is the geo-metric modeller that uses the feature-based models. The models include base plate step, hole, pocket, boss and slot, These are designed by interactive user interface. The other is the expert sys-tem module with inference engine and knowledge database of workpiece material tools manufac-turing machines process an working conditions. With two parts the final mold shape is generated with manufacturing information for effective production.

  • PDF

GEO Satellite Magnetic Momentum Assessment

  • Yang, Jeong-Hwan;Kim, Eui-Chan;Koo, Ja-Chun;Lee, Sang-Kon
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.182.2-182.2
    • /
    • 2012
  • If the satellite has the magnetic material or magnetic moment, the satellite is affected by the earth magnetic field by the space environment in Geostational orbit. The aim of this paper is to assess the satellite magnetic momentum which is an input to ADCS(Altitude Determination Control Subsystem) analyses to assess spurious torques. The magnetic momentum at satellite level is due to magnetic momentum generated by each unit which is due to internal currents circulation or to the presence of magnetic components. Also the magnetic momentum at satellite level is due to circulation of the DC supply current from PSR(Power Supply Regulator) to each unit. As introducing the intrinsic contribution of each unit and the magnetic moment based on the current return through the structure, this paper assess the satellite magnetic moment.

  • PDF

Fabrication of Plasma Electrolytic Oxidation Coatings on Magnesium AZ91D Casting Alloys

  • Lee, Sung-Hyung;Yashiro, Hitoshi;Kure-Chu, Song-Zhu
    • Journal of Surface Science and Engineering
    • /
    • v.50 no.6
    • /
    • pp.432-438
    • /
    • 2017
  • AZ91D casting alloy requires an advanced plasma anodizing processing because large amount of defects are liable to generate during anodization. In this study, plasma electrolytic oxidation (PEO) of AZ91D Mg alloy was conducted by the application of either constant voltage or current using a pulse mode and its effects on pore formation, surface roughness and corrosion resistance were investigated. The PEO films showed a three-layer structure. The PEO film thickness was found to increase linearly with voltage. The surface roughness, Ra, ranged between $0.2{\mu}m$ and $0.3{\mu}m$. The corrosion resistance increased from RN 3.5 to 9.5 by the PEO treatment when evaluated according to the 72 hour salt spray test. The PEO-treated surface exhibited higher pitting potential than the raw material.

High-Ic YBCO thick film fabricated by the MOD process (MOD 공정으로 제조된 고임계전류 YBCO 후막)

  • Shin, Geo-Myung;Song, Kyu-Jung;Moon, Seung-Hyun;Yoo, Sang-Im
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.6-9
    • /
    • 2008
  • We have investigated the MOD process successfully for the fabrication of the YBCO thick film on the $LaAlO_3$(001) single crystalline substrate. The cracking problem in YBCO thick film, a serious problem in the conventional TFA-MOD method, could be overcome with a careful control of precursor materials. Thus coating solution was prepared for the YBCO thick film by using fluorine-free precursor material. The precursor solutions were coated on the LAO(001) single crystalline substrate using the dip coating method, calcined at the temperature up to $500^{\circ}C$, and fired at various high temperatures for 2 h in a reduced oxygen atmosphere. Optimally processed YBCO thick film exhibited high critical current($I_c$) over 200 A/cm-width at 77K in self-field.

The Long-term Growth Characteristics of Vegetation Base Materials Include Spent Coffee Ground (커피박이 포함된 식생기반재의 장기생육특성)

  • Lee, Jundae;Yeon, Yonghum;Seong, Siyung;Bae, Wooseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.10
    • /
    • pp.45-53
    • /
    • 2016
  • At present, coffee consumption amount is annually on the rise in Korea, which results in about 0.27 million tons of coffee waste annually. They are mostly classified as food waste and deserted with moisture contained, being a serious environmental issue. Existing slope greening techniques, which are vegetation based soil-media hydroseeding measures, have problems such as lack of coherence, dryness or lack of organic matters. Therefore in order to assess usability of Spent Coffee Ground (SCG), medium-to long-term growth test was conducted under the indoor and outdoor conditions. According to the result of growth test, when SCG was mixed with existing base materials, moisturizing power increased and organic matter content was reinforced, promoting germination and growth in a medium term. Among others, under the condition when supply of water was discontinued, withering rate was lower than existing base materials and diverse phenomena resulting from lack of nutrition decreased. Therefore, SCG as a waste organic matter with abundant nitrogen has the characteristic of inhibiting early growth but was found to have a quality favorable to long-term growth resulting from water containing ability and the supply of organic mater and is judged to be a material to replace or complement existing base materials.

Behavior of Geotextile Tube Composite Structure by 2-D Limit Equilibrium and Plane Strain Analysis (2차원 한계평형 및 평면변형해석을 통한 지오텍스타일 튜브 복합구조물의 거동분석)

  • Shin, Eunchul
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.13-22
    • /
    • 2006
  • The geotextile have been used in filtration and drainage for over 30 years in many applications of civil and environmental projects. Geotextile tube is compound technology of filtration and drainage property of geotextile. Geotextile have been used for various types of containers, such as small hand-filled sandbags, 3-dimensional fabric forms for concrete paste, large soil and aggregate filled geotextile gabion, prefabricated hydraulically filled containers, and other innovative systems involving containment of soils using geotextile. They are hydraulically filled with dredged materials. It have been applied in coastal protection and scour protection, dewatering method of slurry, and isolation of contaminated material. Recently, geotextile tube technology is no longer alternative construction technique but suitable desired solution. This paper presents the behavior of geotextile tube composite structure by 2-D limit equilibrium and plane strain analysis. 2-D limit equilibrium analysis was performed to evaluate the stability of geotextile tube composite structure for the lateral load and also the plane strain analysis was conducted to determine the design and construction factors. Based on the results of this paper, the three types of geotextile tube composite structure is stable. And the optimum tensile strength of geotextile is 151kN/m and maximum pumping pressure is 22.7kN/m.

  • PDF

A Applicability Study on Single Grouted Column Method (C-RJP Grouting) for Buoyancy-Resistant Permanent Anchor in Highly Permeable Volcanic Clastic Zones (투수성이 높은 화산쇄설층에서 부력앵커 시공을 위한 단일공 차수공법 (C-RJP Grouting)의 적용성에 관한 연구)

  • Jung, Yonggun;Chae, Youngsu;Park, Byunghee;Kim, Jeongryeol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.8
    • /
    • pp.5-12
    • /
    • 2015
  • In this study, buoyancy-resistance permanent anchor was considered to prevent uplift pressure of a building structure. However, this test was failed to put anchor body in the boring hole because of the rapid outflow of ground water and coefficient of permeability. In addition, the hole where the anchor body was forcefully inserted constantly flew the sea water and cement. And it was found that anchor was not settled in the ground. In order to solve this problem, jet grouting method was applied to block the ground water and the single grouted column method was chosen to install the buoyancy-resistance permanent anchor. In this paper, the single grouted column method was applied with the general jet grouting methods and grout material was fixed by 3-field tests. These tests confirmed the effect of permeability and ground improvement with field permeability test by core sampling, Standard Penetration Test (SPT) and unconfined compression test. Confirming the stability of the buoyancy-resistance permanent anchor with installation and tension test, application of the single grouted column method in the volcanic clastic zones was verified.

Improvement Effect and Electrical Characteristics of Soft Ground with Plastic Electrode Spacing (전극간 거리에 따른 연약지반의 지반개량 효과와 전기적 특성)

  • Byeon, Inseong;Kang, Hongsig;Sun, Seokyoun;Han, Jeonghoon;Ahn, Kwangkuk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.1
    • /
    • pp.13-19
    • /
    • 2016
  • Soft ground stabilization is needed to construct large civil facilities on the soft clay ground. Pre-loading method, which is accelerating consolidation method, is generally used to stabilize the soft ground. However, pre-loading method is required long construction period and quantities of fill material. Therefore, electro-osmosis method is used to replace pre-loading method for stabilizing the soft ground. Electro-osmosis method is disadvantageous in constructive and economic aspects because it is needed a metallic electrode. So, in order to solve the those disadvantages, plastic electrode was developed to replace metallic electrode. Plastic electrode, which is made by using nano-technology on existing Plastic Drain Board (PDB), was used to supply the electric power. In this study, therefore, the model test was conducted to confirm the effect of improvement and electrical characteristics of soft ground by spacing of plastic electrode. The result shows that the effect of improvement of soft ground was decreased up to 45% by increasing electrode spacing and electrical characteristics on the soft ground were influenced by consolidation settlement with electrode spacing.