• 제목/요약/키워드: genotoxic effects

검색결과 109건 처리시간 0.034초

Genotoxicity Study of Sophoricoside, a Constituent of Sophora japonica, in Bacterial and Mammalian Cell System

  • Kim, Youn-Jung;Park, Hyo-Joung;Kim, Young-Soo;Kim, Mi-Kyung;Lee, Seung-Ho;Jung, Sang-Hun;Ryu, Jae-Chun
    • 한국환경성돌연변이발암원학회지
    • /
    • 제21권2호
    • /
    • pp.99-105
    • /
    • 2001
  • Sophoricoside was isolated as the inhibitor of IL-5 bioactivity from Sophora japonica (Leguminosae). It has been reported to has an anti-inflammatory effect on rat paw edema model. To develope as an anti-allergic drug, genotoxicity of sophoricoside was investigated in bacterial and mammalian cell system such as Ames bacterial reversion test, chromosomal aberration assay and single cell gel electrophoresis (Comet) assay. As results, in the range of 1,250~40 $\mu\textrm{g}$/plate sophoricoside concentrations was not shown significant mutagenic effects in Salmonella typhimurium TA 98, TA 100, TA 1535 and TA 1537 strains in Ames test. The 80% cell growth inhibition concentration (IC/SUB 80/) of sophoricoside was determined as above 5,000 $\mu\textrm{g}$/$m\ell$ in Chinese hamster lung (CHL) fibroblast cell and L5178Y mouse lymphoma cell line for the chromosomal aberration and comet assay, respectively. Sophoricoside was not induced chromosomal aberration in CHL fibroblast cell at concentrations of 700, 350 and 175 $\mu\textrm{g}$/$m\ell$ or 600, 300 and 150 $\mu\textrm{g}$/$m\ell$ in the absence or presence of S-9 metabolic activation system, respectively. Also, in the comet assay, the induction of DNA damage was not observed in L5178Y mouse lymphoma cell line both in the absence or presence of S-9 metabolic activation system. From these results, no genotoxic effects of sophoricoside were observed in bacterial and mammalian cell systems used in these experiments.

  • PDF

카드뮴의 Salmonella typhimurium 변이균주 및 랫드 간장 상피세포에서의 유전독성 (Genotoxicity of cadmium chloride in Salmonella typhimurium and rat liver epithelial cells)

  • 정상희;조명행;조준형
    • 대한수의학회지
    • /
    • 제38권3호
    • /
    • pp.606-613
    • /
    • 1998
  • Cadmium is one of the well-known environmental toxicants and induces cancer in rodents and human, but its carcinogenic mechanism has not been well demonstrated until now. Genotoxic effects of cadmium in Salmonella typhimurium TA98, TA100 and TA1535/pSK1002 or in WB-F344 rat liver epithelial cells were investigated to elucidate the tumor initiating effects of cadmium. TA98, TA100 and TA1535/pSK1002 tester strains were used to detect frameshift mutation, base-pair mutation and SOS repair response, respectively, in Salmonella mutation test. Reverse mutations from histidine to $histidin^+$ of Salmonella typhimurium TA98 and TA100 by $CdCl_2$ were not significantly different from control up to the maximum doses ($100{\mu}M$ and $200{\mu}M$ in TA98 and TA100, respectively) at which non-cytotoxicity was observed. DNA SOS repair responses(${\beta}$-galactosidase activity) generally did not show significant increases compared to control in both of the conditions with or without metabolic activation in Salmonella typhimurium TA1535/pSK1002 by $CdCl_2$. But the activities of ${\beta}$-galactosidase by $400{\mu}M$ of $CdCl_2$ in metabolic activation condition and by 130 and $400{\mu}M$ of $CdCl_2$ in non-metabolic activation condition were more decreased than those of control. DNA single strand breaks for 4hrs were observed only in WB-F344 rat liver epithelial cells treated with $200{\mu}M$ of $CdCl_2$. As a conclusion, $CdCl_2$ did not induce gene mutation in microbials but induce DNA single strand breaks in rat liver epithelial cells.

  • PDF

마우스 피부암 발생과정에 있어서 2,3,7,8-Tetrachlorodibenzo-p­Dioxin (TCDD) 처리에 의한 유전자발현 변화 연구 (Effects of 2,3,7,8-Tetrachlorodibenzo-p-Dioxin (TCDD) on Gene Expression in Mouse Skin Carcinogenesis)

  • Ryeom Tai Kyung;Kim Ok Hee;Kong Mi Kyung;Park Mi Sun;Jee Seung Wan;Eom Mi Ok;Kang Ho Il
    • 한국환경성돌연변이발암원학회지
    • /
    • 제25권1호
    • /
    • pp.40-46
    • /
    • 2005
  • 2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) displays high toxicity in animals and has been implicated in human carcinogenesis. Although the mechanism of carcinogenesis by TCDD is unclear, it is considered to be a non-genotoxic compound and tumor promoter. In our experiment, we investigated the effects of TCDD on gene expression in mouse skin carcinogenesis. We used cDNA microarray to detect the differential gene expression in tumors induced in hairless mouse skin by MNNG plus TCDD protocol. We found that erb-2, c-ets2 and p27$^{kip1}$ were significantly up-regulated, but TNFR2, AKT-l, integrin $\beta$l, maspin, IGF-l, c-raf-l, Rb were significantly down-regulated, in tumor region, respectively. We also found that the expression of 53 genes involved in cen cycle, signal transduction, apoptosis, adhesion molecule, angiogenesis, and invasion, were changed two fold more, in tumor surrounding region. These data suggest that TCDD alters the expression of a large array of genes involved in apoptosis, cytokine production and angiogenesis in mouse skin carcinogenesis.

  • PDF

Genotoxicity and subchronic toxicological study of a novel ginsenoside derivative 25-OCH3-PPD in beagle dogs

  • Li, Wei;Zhang, Xiangrong;Ding, Meng;Xin, Yanfei;Xuan, Yaoxian;Zhao, Yuqing
    • Journal of Ginseng Research
    • /
    • 제43권4호
    • /
    • pp.562-571
    • /
    • 2019
  • Background: Ginsenosides have been widely used clinically for many years and were regarded as very safe. However, a few researches on the toxicities of these kinds of agents showed that some ginsenosides may have side-effect on the rats or dogs. So it is extremely necessary to further clarify the potential toxicity of ginsenosides. This study was carried out to investigate long-term toxicity and genotoxicity of 25-methoxydammarane-3, 12, 20-triol ($25-OCH_3-PPD$), a new derivative of ginsenoside, in beagle dogs. Methods: Twenty-four beagle dogs were divided randomly into four treatment groups and repeatedly orally administered with $25-OCH_3-PPD$ capsule at 60, 120, and 240 mg/kg/day for 91 consecutive days. Ames, micronucleus, and chromosomal aberration tests were established to analyze the possible genotoxicity of $25-OCH_3-PPD$. Results: There was no $25-OCH_3-PPD$einduced systemic toxicity in beagle dogs at any doses. The level of $25-OCH_3-PPD$ at which no adverse effects were observed was found to be 240 mg/kg/day. The result of Ames test showed that there was no significant increase in the number of revertant colonies of $25-OCH_3-PPD$ administrated groups compared to the vehicle control group. There were also no significant differences between $25-OCH_3-PPD$ administrated groups at all dose levels and negative group in the micronucleus test and chromosomal aberration assay. Conclusion: The highest dose level of $25-OCH_3-PPD$ at which no adverse effects were observed was found to be 240 mg/kg per day, and it is not a genotoxic agent either in somatic cells or germs cells. $25-OCH_3-PPD$ is an extremely safe candidate compound for antitumor treatment.

감초 신품종 추출물의 유전독성 평가 (Genotoxicity Evaluation of the Glycyrrhiza New Variety extract)

  • 송영재;김동구;이정훈;김원남;안효진;이종현;장재기;강사행;전용덕;진종식
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 2021년도 춘계학술대회
    • /
    • pp.67-67
    • /
    • 2021
  • The genus Glycyrrhiza (Licorice) has been used as an oriental herbal medicine for a long time in Asian countries. Wongam (WG), which is Glycyrrhiza new variety, have been developed to improve limitation of licorice including low productivity, environmental restriction and insufficient components by Korea Rural Development Administration. To using WG as a herbal medicine, it is important to reveal the adverse effects in health. In this study, we evaluated the genotoxicity test of WG extract through in vitro bacterial reverse mutation (AMES) assay, in vitro chromosomal aberration assay and in vivo mouse bone marrow micronucleus assay. When compared with the control, WG extract with or without the S9 mix showed no genotoxicity in the AMES assay up to 5000 ㎍/plate and in the chromosomal aberration assay up to 1100 ㎍/ml. In micronucleus assay, no significant increase in the number of micronucleated polychromatic erythrocytes or in the mean ratio of polychromatic to total erythrocytes up to 5000 mg/kg/day for 2 days. The present study demonstrated that WG extract is safe and reliable herbal medicine since no detectable genotoxic effects at least under the conditions of this study.

  • PDF

님추출물의 in vitro 항돌연변이원성 및 유전독성 영향 (In vitro Antimutagenic and Genotoxic Effects of Azadirachta indica Extract)

  • 윤현주;조현조;김진효;박경훈;길근환;오진아;조남준;백민경
    • Journal of Applied Biological Chemistry
    • /
    • 제57권3호
    • /
    • pp.219-225
    • /
    • 2014
  • 님 추출물은 포유류에 낮은 독성을 가지고 있기 때문에 유기농업자재로 주로 이용되고 있다. 그러나 님 추출물은 림프구의 염색체 이상을 야기한다는 연구결과가 보고되었다. 따라서, 본 연구는 님 추출물을 이용하여 항돌연변이원성 시험 및 유전독성을 평가하였다. 항돌연변이원성 시험은 복귀돌연변이 시험을 이용하여 시험하였다. 복귀돌연변이 시험은 2개의 님 추출물을 Salmonella Typhimurium 5개 균주를 이용하여 돌연변이 유발 가능성을 평가하였다. 복귀돌연변이시험과 염색체이상시험은은 대사활성계 처리군(S-9 mix)과 대사활성계 미처리군(PBS)으로 나누어 양성대조군과 음성대조군을 사용하여 실시하였다. 염색체이상시험은 Chinese hamster lung cell을 이용하여 님추출물 시료에 대사활성계 처리군은 6시간 노출시켰고, 대사활성계 미처리군은 각각 6시간과 24시간 노출시켜 시험하였고, 음성대조군과 양성대조군을 사용하였다. 4 NQO에 의해 유도 된 돌연변이 집락수는 님추출물 시료 처리에 의해 감소되어 SRE는 항 돌연변이 효과가 있을 수 있음을 나타냈다. 복귀돌연변이와 염색체이상시험은 님추출물 모든 시험 농도군에서 대화활성계의 처리 유무와 관계없이 음성으로 판정되었다. 이상의 결과를 ICH에서 제안된 유전독성 battery system에 근거해 살펴 봤을 때 본 연구에서 사용된 님 추출물 2종은 모두 유전독성이 없어 안전함을 확인 할 수 있었다.

고삼추출물의 in vitro 항돌연변이원성과 유전독성 연구 (In vitro Antimutagenic and Genotoxic Effects of Sophora Radix Extracts)

  • 조현조;윤현주;박경훈;이제봉;심창기;김진효;정미혜;오진아;김두호;백민경
    • 농약과학회지
    • /
    • 제17권4호
    • /
    • pp.335-342
    • /
    • 2013
  • 고삼추출물은 한국에서 유기농업자재로 등록되어 있어 친환경농산물 재배시에 널리 사용되고 있다. 고삼추출물의 유효성분인 matrine은 쥐의 신경계에 독성을 나타낸다고 보고된 바 있으나 다른 안전성 확인 연구는 미비한 상황이다. 따라서 본 연구는 고삼추출물 2종을 이용하여 항돌연변이원성 시험과 유전독성시험 2종(복귀돌연변이 및 염색체이상 시험)을 실시하였다. 항돌연변이원성 시험은 복귀돌연변이 시험방법을 이용하여 실시하였으며, 복귀돌연변이 시험으로는 Salmonella Typhimurium TA98, TA1535와 TA1537을 이용하여, S-9 mix를 사용한 대사활성계 처리군과 PBS를 사용한 대사활성계 미처리군으로 구분하여 진행하였다. 염색체이상 시험은 Chinese hamster lung cells을 이용하여 고삼추출물 시료에 대사활성계 처리군은 6시간 노출시켰고, 대사활성계 미처리군은 각각 6시간과 24시간 노출시켜 시험하였다. 항돌연변이 시험 결과, 4-NQO에 의해 유도된 돌연변이 집락수는 고삼추출물 시료 처리에 의해 감소되어 항돌연변이 효과가 있는 것으로 나타났다. 시험결과, 복귀돌연변이 시험에서는 고삼추출물의 모든 시험 농도군에서 대사활성계의 처리 유무와 관계없이 독성이 나타나지 않았다. 반면, 염색체이상시험 결과 고삼추출물 시료 1종에서 대사활성계 미처리군에서는 250 ${\mu}g/mL$, 대사활성 처리군에서는 500 ${\mu}g/mL$ 의 농도에서 의양성이 나타났고 이 이하의 농도에서는 모두 음성으로 나타났으며, 나머지 시료 1종에서는 모든 처리농도군에서 음성으로 판정되었다. 고삼추출물의 유전독성 가능성을 더 정밀히 평가하기 위해서는 향후 battery system에 포함된 다른 in vivo 유전독성 시험을 추가로 시행하여 유전독성 여부를 최종 확인할 필요가 있다고 판단된다.

물속 휘발성 유기화합물이 염색체 돌연변이에 미치는 영향 (Genotoxic Effects of Volatile Organic Compounds in Water)

  • 정규생;이채용;신현길;이기남;정재열;이종영
    • 동의생리병리학회지
    • /
    • 제16권5호
    • /
    • pp.899-904
    • /
    • 2002
  • For determination of the genotoxicity of VOCs(Volatile Organic Compounds) in water, in vitro Comet assay was performed using 3T3 cells. The selected 5 VOCs; Trichloroethylene(TCE), Tetrachloroethylene(PCE), Carbontetrachloride (CteC), Dichloromethane(DCM) and Chlorofrom(Chl) and mixed solvent(Mix), are the test items for drinking water quality. Author analyzed the genotoxicity of these solvents through their tail length (TL) values. Mix, PCE, Chl, TCE in order had cytotoxicity at the highest concentration, and CCl₄ and DCM had no cytotoxic effect. TCE, CCl₄, Chl, PCE, Mix, DCM had genotoxicity, Chl, PCE, Mix had both cytotoxicity and genotoxicity simultaneously, Cytotoxic effect of mixed organic solvents, compared with that of single component, at each concentration, was influenced by the synergistic effect of the interaction of each organic component.

1,3-Dichloro-2-Propanol (1,3-DCP)에 의한 세포의 손상기전 (1,3-Dichloro-2-Propanol (1,3-DCP) Induced Cell Damage)

  • 정지학;신익재;신영민;박흥재;안원근
    • 한국환경과학회지
    • /
    • 제16권2호
    • /
    • pp.219-225
    • /
    • 2007
  • Endocrine disrupting compounds (EDC's) are chemicals that either mimic endogenous hormones interfering with pharmacokinetics or act by other mechanisms. Some endocrine disrupters were reported to be chemical substances that cause apoptosis in cells. A number of reports have indicated that 1,3-DCP, one of the EDC's may act as an endocrine disrupter and also has possible carcinogenic effects. 1,3-DCP, present in commercial protein hydrolysates used for human nutrition, are genotoxic and 1,3-dichloro-2-propanol induced tumors in rats. In the present study, it was investigated whether 1,3-DCP induces ROS generation and apotosis in A549 adenocarcinoma cells. Here we show that 1,3-DCP inhibits the growth of lung cancer cell lines and generates reactive oxygen species (ROS), a major cause of DNA damage and genetic instability, It was investigated that 1,3-DCP increases G1 phase cells after 12 hours, thereafter abruptly draws A549 cells to G0 state after 24 hours by flow cytometric analysis. 1,3-DCP induces p53 and $p21^{Cip1/WAF1}$ activation time- and dose-dependently by 24 hours, while the level $p21^{Cip1/WAF1}$ was decreased after 48 hours. These results suggest that 1,3-DCP, an EDC's generates ROS and regulates genes involved with cell cycle and apoptosis.

후박 추출물의 유전독성평가 (Genotoxicity Study of Magnolia obovata Extracts)

  • 이승호;류재면;서임권;이태희;김윤배;문성권;정경환;박기랑;황석연
    • Toxicological Research
    • /
    • 제23권1호
    • /
    • pp.73-78
    • /
    • 2007
  • To evaluate the immuno-toxicity of magnolia extracts, mutagenicity of Salmonella, chromosome aberration of Chinese hamster ovary (CHO) cells and micronucleus formation in rats were examined. Magnolia extracts at the concentrations of $312{\sim}5,000{\mu}g/plate$ did not induce mutagenicity in Salmonella typhimurium TA 98, TA 100 and TA 1535 with and without metabolic activation of S-9 mixture. In chromosome aberration assay, Magnolia extracts at the concentrations of $50{\sim}800{\mu}g/plate$ did not cause a significant chromosome aberration in CHO cells with and without metabolic activation of S-9 mixture. Magnolia extracts were treated with dose of 0.5, 1 and 2 g/kg in ICR mice. After 48 hours, the frequencies of the micro-nucleided polychromasia erythrocytes (MNPCE) were determined in bone marrows isolated from the mice. Magnolia extracts did not increase the incidence of polychromasia erythrocytes of bone marrow in ICR mice. These results show that Mgnolia extracts did not induce any harmful genotoxic effects.