• 제목/요약/키워드: genomic

검색결과 3,427건 처리시간 0.031초

Characterization of Microbial Community in the Leachate Associated with the Decomposition of Entombed Pigs

  • Yang, Seung-Hak;Hong, Sun Hwa;Cho, Sung Back;Lim, Joung Soo;Bae, Sung Eun;Ahn, Heekwon;Lee, Eun Young
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1330-1335
    • /
    • 2012
  • Foot and mouth disease (FMD) is one of the acute infectious diseases in hoofed and even-toed mammals, including pigs, and it occurs via acute infection by Aphthovirus. When FMD is suspected, animals around the location of origin are typically slaughtered and buried. Other methods such as rendering, composting, and incineration have not been verified in practice in Korea. After the FMD incident, the regular monitoring of the microbial community is required, as microorganisms greatly modify the characteristics of the ecosystem in which they live. This is the result of their metabolic activities causing chemical changes to take place in the surrounding environment. In this study, we investigated changes in the microbial community during a 24 week period with DNA extracts from leachate, formed by the decomposition of buried pigs at a laboratory test site, using denaturing gradient gel electrophoresis (DGGE) with a genomic DNA. Our results revealed that Bacteroides coprosuis, which is common in pig excreta, and Sporanaerobacter acetigenes, which is a sulfur-reduced microbe, were continuously observed. During the early stages (0~2 weeks) of tissue decomposition, Clostridium cochlearium, Fusobacterium ulcerans, and Fusobacterium sp., which are involved in skin decomposition, were also observed. In addition, various microbes such as Turicibacter sanguinis, Clostridium haemolyticum, Bacteroides propionicifaciens, and Comamonas sp. were seen during the later stages (16~24 weeks). In particular, the number of existing microbial species gradually increased during the early stages, including the exponential phase, decreased during the middle stages, and then increased again during the later stages. Therefore, these results indicate that the decomposition of pigs continues for a long period of time and leachate is created continuously during this process. It is known that leachate can easily flow into the neighboring environment, so a long-term management plan is needed in burial locations for FMD-infected animals.

Use of In Vivo-Induced Antigen Technology to Identify In Vivo-Expressed Genes of Campylobacter jejuni During Human Infection

  • Hu, Yuanqing;Huang, Jinlin;Li, Qiuchun;Shang, Yuwei;Ren, Fangzhe;Jiao, Yang;Liu, Zhicheng;Pan, Zhiming;Jiao, Xin-An
    • Journal of Microbiology and Biotechnology
    • /
    • 제24권3호
    • /
    • pp.363-370
    • /
    • 2014
  • Campylobacter jejuni is a prevalent foodborne pathogen worldwide. Human infection by C. jejuni primarily arises from contaminated poultry meats. Genes expressed in vivo may play an important role in the pathogenicity of C. jejuni. We applied an immunoscreening method, in vivo-induced antigen technology (IVIAT), to identify in vivo-induced genes during human infection by C. jejuni. An inducible expression library of genomic proteins was constructed from sequenced C. jejuni NCTC 11168 and was then screened using adsorbed, pooled human sera obtained from clinical patients. We successfully identified 24 unique genes expressed in vivo. These genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, and other processes. We selected six genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results showed that the selected six genes were significantly upregulated in vivo but not in vitro. In short, these identified in vivo-induced genes may contribute to human infection of C. jejuni, some of which may be meaningful vaccine candidate antigens or diagnosis serologic markers for campylobacteriosis. IVIAT may present a significant and efficient method for understanding the pathogenicity mechanism of Campylobacter and for finding targets for its prevention and control.

지브라물고기 복제방법에 의한 유전자 동정 및 유전자트랩법 개발 (Developing a Gene-trapping Approach for Gene Identification Using Nuclear Transfer in Zebrafish)

  • 이기영
    • Journal of Animal Science and Technology
    • /
    • 제46권2호
    • /
    • pp.155-164
    • /
    • 2004
  • 이 연구는 gene-trap construct를 가지고 있는 배양세포로부터 trap gene을 확인하고 클로닝한 다음 이러한 세포를 이용하여 복제 지브라물고기를 만들기 위해 수행되어졌다. 본 연구에서 gene-trap과 연관된 복제 지브라물고기가 성공적으로 만들어졌다. 본 실험에서 두 종류의 백터(SA/GFP-TP와 Neo-TP)가 사용되었다. 이들 벡터에 의해 전이된 모든 종류의 세포는 항생제에 의해 선별을 하여 분석에 이용하였다. SA/GFP-TP에 의해 전이된 세포의 경우, 단일세포상에서 GFP 발현도가 낮아 본 연구에서 동물복제에 사용되지 않았으며, Neo-TP에 의해 전이된 세포주가 복제실험에 이용되었다. Neo-TP 세포에 의한 복제실험 결과, 총 1179개의 핵치환 난으로부터 44(3.7%) 개의 배자가 포배기에 도달하였으며, 8(0.8%) 개의 배자가 부화시기에 이르렀다. 그리고 3마리는 성숙단계에 이르렀으며, 이중 1마리에서 정상적으로 gene-trap 전이가 이루어짐을 Southern blot 분석을 통해 확인되었다.

Erwinia carotovora subsp. carotovora LY34에서 pelCI 유전자 클로닝 (Cloning and Sequencing of the pelCl Gene Encoding Pectate Lyase of Erwinia carotovora subsp. carotovora LY34)

  • 임선택;박용우;윤한대
    • Applied Biological Chemistry
    • /
    • 제40권5호
    • /
    • pp.380-387
    • /
    • 1997
  • Pectate lyase isoenzymes을 분비하는 Erwinia carotovorn subsp. carotovora LY34는 식물조직을 연화시키는 연부균이다. 이 균주로부터 게놈 DNA를 분리하여 Sau3Al 제한효소로 부분 절단한 다음 pBluescript $SK^+$ 벡터에 클로닝하여 pectate Iyase를 분비하는 클론을 분리하였다 분리 결과 4.2 kb크기의 DNA 단편을 가지고 있었으며 이를 다시 재클로닝하여 3.1 kb크기의 pelCI유전자를 함유하는 pLYPA100을 구하였다. 이 유전자의 DNA 염기서열을 분석한 결과 374 개의 아미노산을 구성하는 1,122 bp의 ORF를 확인하였다. 시작코돈과 종결코돈은 ATG와 TAA였으며 초기 서열 22개의 아미노산으로 구성된 전형적인 원핵세포의 signal peptide가 존재하였다. PeICI의 단백질 염기서열을 다른 단백질과 유사성을 분석한 결과 Erwinia carotovera subsp. carotovora Er 균주의 PelIII, Erwinia carotevora subsp. carotovora SCR193 균주의 PeIC 및 Erwinia caretovora subsp. atroseptica C18 균주의 Pel3과 유사하였으며 PLbc family에 속하였다. PeICI의 분자량은 40,507, pI는 7.60으로 계산되었다.

  • PDF

Nucleus-Selective Expression of Laccase Genes in the Dikaryotic Strain of Lentinula edodes

  • Ha, Byeongsuk;Lee, Sieun;Kim, Sinil;Kim, Minseek;Moon, Yoon Jung;Song, Yelin;Ro, Hyeon-Su
    • Mycobiology
    • /
    • 제45권4호
    • /
    • pp.379-384
    • /
    • 2017
  • In mating of Lentinula edodes, dikaryotic strains generated from certain monokaryotic strains such as the B2 used in this study tend to show better quality of fruiting bodies regardless of the mated monokaryotic strains. Unlike B2, dikaryotic strains generated from B16 generally show low yields, with deformed or underdeveloped fruiting bodies. This indicates that the two nuclei in the cytoplasm do not contribute equally to the physiology of dikaryotic L. edodes, suggesting an expression bias in the allelic genes of the two nuclei. To understand the role of each nucleus in dikaryotic strains, we investigated single nucleotide polymorphisms (SNPs) in laccase genes of monokaryotic strains to reveal nuclear origin of the expressed mRNAs in dikaryotic strain. We performed reverse transcription PCR (RT-PCR) analysis using total RNAs extracted from dikaryotic strains (A5B2, A18B2, and A2B16) as well as from compatible monokaryotic strains (A5, A18, and B2 for A5B2 and A18B2; A2 and B16 for A2B16). RT-PCR results revealed that Lcc1, Lcc2, Lcc4, Lcc7, and Lcc10 were the mainly expressed laccase genes in the L. edodes genome. To determine the nuclear origin of these laccase genes, the genomic DNA sequences in monokaryotic strains were analyzed, thereby revealing five SNPs in Lcc4 and two in Lcc7. Subsequent sequence analysis of laccase mRNAs expressed in dikaryotic strains revealed that these were almost exclusively expressed from B2-originated nuclei in A5B2 and A18B2 whereas B16 nucleus did not contribute to laccase expression in A2B16 strain. This suggests that B2 nucleus dominates the expression of allelic genes, thereby governing the physiology of dikaryons.

Present Status and Future Management Strategies for Sugarcane Yellow Leaf Virus: A Major Constraint to the Global Sugarcane Production

  • Holkar, Somnath Kadappa;Balasubramaniam, Parameswari;Kumar, Atul;Kadirvel, Nithya;Shingote, Prashant Raghunath;Chhabra, Manohar Lal;Kumar, Shubham;Kumar, Praveen;Viswanathan, Rasappa;Jain, Rakesh Kumar;Pathak, Ashwini Dutt
    • The Plant Pathology Journal
    • /
    • 제36권6호
    • /
    • pp.536-557
    • /
    • 2020
  • Sugarcane yellow leaf virus (SCYLV) is a distinct member of the Polerovirus genus of the Luteoviridae family. SCYLV is the major limitation to sugarcane production worldwide and presently occurring in most of the sugarcane growing countries. SCYLV having high genetic diversity within the species and presently ten genotypes are known to occur based on the complete genome sequence information. SCYLV is present in almost all the states of India where sugarcane is grown. Virion comprises of 180 coat protein units and are 24-29 nm in diameter. The genome of SCYLV is a monopartite and comprised of single-stranded (ss) positive-sense (+) linear RNA of about 6 kb in size. Virus genome consists of six open reading frames (ORFs) that are expressed by sub-genomic RNAs. The SCYLV is phloem-limited and transmitted by sugarcane aphid Melanaphis sacchari in a circulative and non-propagative manner. The other aphid species namely, Ceratovacuna lanigera, Rhopalosiphum rufiabdominalis, and R. maidis also been reported to transmit the virus. The virus is not transmitted mechanically, therefore, its transmission by M. sacchari has been studied in different countries. SCYLV has a limited natural host range and mainly infect sugarcane (Sachharum hybrid), grain sorghum (Sorghum bicolor), and Columbus grass (Sorghum almum). Recent insights in the protein-protein interactions of Polerovirus through protein interaction reporter (PIR) technology enable us to understand viral encoded proteins during virus replication, assembly, plant defence mechanism, short and long-distance travel of the virus. This review presents the recent understandings on virus biology, diagnosis, genetic diversity, virus-vector and host-virus interactions and conventional and next generation management approaches.

Comparative Study of Anti-Apoptotic Genes, Bcl-2 and P35 for the Suppression of Apoptosis Induced in Suspension Culture of Transformed Trichoplusia ni BTI Tn 5B1-4 Cells

  • Lee, Jong-Min;Sohn, Bong-Hee;Kang, Pil-Don;Lee, Sang-Uk;Chung, In-Sik
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제9권2호
    • /
    • pp.173-181
    • /
    • 2004
  • To delay the onset of apoptosis in the culture, transformed Tn 5B1-4 cells harboring anti-apoptotic genes, bcl-2 and baculovirus p35, have been established and analyzed for their anti-apoptotic ability in suspension culture using spinner flasks. In the suspension culture at agitation speeds of 100 rpm and 200 rpm, the cell growth of cell clone expressing Bcl-2 protein was much higher than other two clones and the maximum cell density of the clone was 6.0 ${\times}$ 10$^{6}$ cells/ml and 6.2 ${\times}$ 10$^{6}$ cells/ml at day three of the incubation. On the other hand, the cell growth of cell clone expressing baculovirus protein P35 was much higher than other two clones in suspension culture at agitation speed of 300 rpm and the maximum cell density of the clone was 6.1 ${\times}$ 10$^{6}$ cells/ml at day three of the incubation. Based on the pattern of genomic DNA laddering and the microscopic observation of apoptotic bodies, the more apoptotic bodies are induced in Tn 5B1-4 control cell clone at higher agitation speed. This result shows that the shear stress can be a main factor in inducing apoptosis in spinner flask culture. At low agitation speed, cell clone expressing Bcl-2 was more effective in delaying the onset of apoptosis than the cell clone expressing P35. On the other hand, at high agitation speed, cell clones expressing baculovirus P35 was more effective in delaying the onset of apoptosis than the cell clone expressing Bcl-2. Therefore, anti-apoptotic genes, bcl-2 and baculovirus p35, can playa distinct role depending on agitation speed in the suspension culture.

소에서 Coxiella burnetii의 검출 (Detection of Coxiella burnetii in Cattle)

  • 김요한;김두
    • 한국임상수의학회지
    • /
    • 제32권6호
    • /
    • pp.504-507
    • /
    • 2015
  • Coxiella burnetii는 세포 내 기생하는 리케치아의 한 종류로 전세계에서 발병하는 인수공통 전염병인 큐열의 원인체이다. 국내에서 C. burnetii의 감염이 사람과 동물에서 보고되고 있지만 제한적인 지역에서만 실시되었다. 본 연구의 목적은 real-time PCR을 이용하여 소의 혈액과 유즙 시료에서 C. burnetii의 전국적인 검출률을 조사하는 것이다. 총 1,325 개 시료(한우 혈액 622 개, 젖소 혈액 185 개, 젖소 개체 유즙 170 개 및 젖소 집합유 348 개)를 전국적으로 채취하였다. 채취한 시료에서 Genomic DNA를 추출하였으며 C. burnetii 검출을 위한 real-time PCR을 실시하였다. 한우 혈액 622 개 중 17(2.7%) 개에서 C. burnetii가 검출되었고 젖소 혈액 185 개 중 2 (1.1%) 개에서 C. burnetii가 검출되었다. 젖소의 개체별 유즙 170 개 중 27(15.9%) 개에서 C. burnetii가 검출되었으며 집합유 348 개 중 84(24.1%) 개에서 C. burnetii가 검출되었다. 본 연구는 국내의 소가 C. burnetii에 높게 감염되어 있는 것을 확인하였으며, 인수공통질병인 큐열에 의한 가축과 사람의 피해를 예방하기 위하여, 가축과 사람의 큐열에 대한 추가적인 역학적 연구가 필요하다고 생각된다.

Molecular Analysis of Colonized Bacteria in a Human Newborn Infant Gut

  • Park Hee-Kyung;Shim Sung-Sub;Kim Su-Yung;Park Jae-Hong;Park Su-Eun;Kim Hak-Jung;Kang Byeong-Chul;Kim Cheol-Min
    • Journal of Microbiology
    • /
    • 제43권4호
    • /
    • pp.345-353
    • /
    • 2005
  • The complex ecosystem of intestinal micro flora is estimated to harbor approximately 400 different microbial species, mostly bacteria. However, studies on bacterial colonization have mostly been based on culturing methods, which only detect a small fraction of the whole microbiotic ecosystem of the gut. To clarify the initial acquisition and subsequent colonization of bacteria in an infant within the few days after birth, phylogenetic analysis was performed using 16S rDNA sequences from the DNA iso-lated from feces on the 1st, 3rd, and 6th day. 16S rDNA libraries were constructed with the amplicons of PCR conditions at 30 cycles and $50^{\circ}C$ annealing temperature. Nine independent libraries were produced by the application of three sets of primers (set A, set B, and set C) combined with three fecal samples for day 1, day 3, and day 6 of life. Approximately 220 clones ($76.7\%$) of all 325 isolated clones were characterized as known species, while other 105 clones ($32.3\%$) were characterized as unknown species. The library clone with set A universal primers amplifying 350 bp displayed increased diversity by days. Thus, set A primers were better suited for this type of molecular ecological analysis. On the first day of the life of the infant, Enterobacter, Lactococcus lactis, Leuconostoc citreum, and Streptococcus mitis were present. The largest taxonomic group was L. lactis. On the third day of the life of the infant, Enterobacter, Enterococcus faecalis, Escherichia coli, S. mitis, and Streptococcus salivarius were present. On the sixth day of the life of the infant, Citrobacter, Clostridium difficile, Enterobacter sp., Enterobacter cloacae, and E. coli were present. The largest taxonomic group was E. coli. These results showed that microbiotic diversity changes very rapidly in the few days after birth, and the acquisition of unculturable bacteria expanded rapidly after the third day.

Molecular Survey of Latent Pseudorabies Virus Infection in Nervous Tissues of Slaughtered Pigs by Nested and Real-time PCR

  • Yoon Hyun A;Eo Seong Kug;Aleyas Abi George;Park Seong Ok;Lee John Hwa;Chae Joon Seok;Cho Jeong Gon;Song Hee Jong
    • Journal of Microbiology
    • /
    • 제43권5호
    • /
    • pp.430-436
    • /
    • 2005
  • In this study, the prevalence and quantity of a latent pseudorabies virus (PrV) infection in the nervous tissues of randomly selected pigs was determined via nested and real-time PCR. The nervous tissues, including the trigeminal ganglion (TG), olfactory bulb (OB), and brain stem (BS), were collected from the heads of 40 randomly selected pigs. The majority of the nervous tissues from the selected pigs evidenced a positively amplified band on nested PCR. In particular, nested PCR targeted to the PrV glycoprotein B (gB) gene yielded positive results in all of the BS samples. Nested PCR for either the gE or gG gene produced positive bands in a less number of nervous tissues ($57.5\%$ and $42.5\%$, respectively). Real-time PCR revealed that the examined tissues harbored large copy numbers of latent PrV DNA, ranging between $10^{0.1}\;and\;10^{7.2}(1-1.58{\times}10^7)$ copies per $1{\mu}g$ of genomic DNA. Real-time PCR targeted to the PrV gE gene exhibited an accumulated fluorescence of reporter dye at levels above threshold, thereby indicating a higher prevalence than was observed on the nested PCR ($100\%$ for BS, $92\%$ for OB, and $85\%$ for TG). These results indicate that a large number of farm-grown pigs are latently infected with a field PrV strain with a variety of copy numbers. This result is similar to what was found in association with the human herpes virus.