Browse > Article
http://dx.doi.org/10.4014/jmb.1311.11019

Use of In Vivo-Induced Antigen Technology to Identify In Vivo-Expressed Genes of Campylobacter jejuni During Human Infection  

Hu, Yuanqing (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Huang, Jinlin (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Li, Qiuchun (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Shang, Yuwei (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Ren, Fangzhe (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Jiao, Yang (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Liu, Zhicheng (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Pan, Zhiming (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Jiao, Xin-An (Jiangsu Key Laboratory of Zoonosis, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University)
Publication Information
Journal of Microbiology and Biotechnology / v.24, no.3, 2014 , pp. 363-370 More about this Journal
Abstract
Campylobacter jejuni is a prevalent foodborne pathogen worldwide. Human infection by C. jejuni primarily arises from contaminated poultry meats. Genes expressed in vivo may play an important role in the pathogenicity of C. jejuni. We applied an immunoscreening method, in vivo-induced antigen technology (IVIAT), to identify in vivo-induced genes during human infection by C. jejuni. An inducible expression library of genomic proteins was constructed from sequenced C. jejuni NCTC 11168 and was then screened using adsorbed, pooled human sera obtained from clinical patients. We successfully identified 24 unique genes expressed in vivo. These genes were implicated in metabolism, molecular biosynthesis, genetic information processing, transport, and other processes. We selected six genes with different functions to compare their expression levels in vivo and in vitro using real-time RT-PCR. The results showed that the selected six genes were significantly upregulated in vivo but not in vitro. In short, these identified in vivo-induced genes may contribute to human infection of C. jejuni, some of which may be meaningful vaccine candidate antigens or diagnosis serologic markers for campylobacteriosis. IVIAT may present a significant and efficient method for understanding the pathogenicity mechanism of Campylobacter and for finding targets for its prevention and control.
Keywords
Campylobacter jejuni; in vivo-induced antigen technology (IVIAT); in vivo-induced gene; foodborne pathogen;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Zautner AE, Herrmann S, Corso J, Tareen AM, Alter T, Gross U. 2011. Epidemiological association of different Campylobacter jejuni groups with metabolism-associated genetic markers. Appl. Environ. Microbiol. 77: 2359-2365.   DOI   ScienceOn
2 Zilbauer M, Dorrell N, Wren BW, Bajaj-Elliott M. 2008. Campylobacter jejuni-mediated disease pathogenesis: an update. Trans. R. Soc. Trop. Med. Hyg. 102: 123-129.   DOI   ScienceOn
3 Zou YX, Mo ZL, Hao B, Ye XH, Guo DS, Zhang PJ. 2010. Screening of genes expressed in vivo after infection by Vibrio anguillarum M3. Lett. Appl. Microbiol. 51: 564-569.   DOI   ScienceOn
4 Newell DG. 2001. Animal models of Campylobacter jejuni colonization and disease and the lessons to be learned from similar Helicobacter pylori models. J. Appl. Microbiol. 90: 57S- 67S.   DOI
5 Kaakoush NO, Raftery M, Mendz GL. 2008. Molecular responses of Campylobacter jejuni to cadmium stress. FEBS J. 275: 5021-5033.   DOI   ScienceOn
6 Parkhill J, Wren BW, Mungall K, Ketley JM, Churcher C, Basham D, et al. 2000. The genome sequence of the foodborne pathogen Campylobacter jejuni reveals hypervariable sequences. Nature 403: 665-668.   DOI   ScienceOn
7 Lowry JE, Goodridge L, Vernati G, Fluegel AM, Edwards WH, Andrews GP. 2010. Identification of Brucella abortus genes in elk (Cervus elaphus) using in vivo-induced antigen technology (IVIAT) reveals novel markers of infection. Vet. Microbiol. 142: 367-372.   DOI   ScienceOn
8 Rathbun KM, Thompson SA. 2009. Mutation of PEB4 alters the outer membrane protein profile of Campylobacter jejuni. FEMS Microbiol. Lett. 300: 188-194.   DOI   ScienceOn
9 Malik-Kale P, Parker CT, Konkel ME. 2008. Culture of Campylobacter jejuni with sodium deoxycholate induces virulence gene expression. J. Bacteriol. 190: 2286-2297.   DOI   ScienceOn
10 Riedel CT, Cohn MT, Stabler RA, Wren B, Brondsted L. 2012. Cellular response of Campylobacter jejuni to trisodium phosphate. Appl. Environ. Microbiol. 78: 1411-1415.   DOI
11 Rollins SM, Peppercorn A, Hang L, Hillman JD, Calderwood SB, Handfield M, Ryan ET. 2005. In vivo induced antigen technology (IVIAT). Cell Microbiol. 7: 1-9.
12 Trost M, Wehmhoner D, Kärst U, Dieterich G, Wehland J, Jänsch L. 2005. Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 5: 1544-1557.   DOI   ScienceOn
13 Hang L, John M, Asaduzzaman M, Bridges EA, Vanderspurt C, Kirn TJ, et al. 2003. Use of in vivo-induced antigen technology (IVIAT) to identify genes uniquely expressed during human infection with Vibrio cholerae. Proc. Natl. Acad. Sci. USA 100: 8508-8513.   DOI   ScienceOn
14 Hermans D, Pasmans F, Messens W, Martel A, Van Immerseel F, Rasschaert G, et al. 2012. Poultry as a host for the zoonotic pathogen Campylobacter jejuni. Vector Borne Zoonot. Dis. 12: 89-98.   DOI   ScienceOn
15 Hofreuter D, Novik V, Galan JE. 2008. Metabolic diversity in Campylobacter jejuni enhances specific tissue colonization. Cell Host Microbe 4: 425-433.   DOI   ScienceOn
16 Dasti JI, Tareen AM, Lugert R, Zautner AE, Gross U. 2010. Campylobacter jejuni: a brief overview on pathogenicityassociated factors and disease-mediating mechanisms. Int. J. Med. Microbiol. 300: 205-211.   DOI   ScienceOn
17 Gaasbeek EJ, van der Wal FJ, van Putten JP, de Boer P, van der Graaf-van Bloois L, de Boer AG, et al. 2009. Functional characterization of excision repair and RecA-dependent recombinational DNA repair in Campylobacter jejuni. J. Bacteriol. 191: 3785-3793.   DOI   ScienceOn
18 Hu Y, Cong Y, Li S, Rao X, Wang G, Hu F. 2009. Identification of in vivo induced protein antigens of Salmonella enterica serovar Typhi during human infection. Sci. China C Life Sci. 52: 942-948.   DOI   ScienceOn
19 Hu Y, Shang Y, Huang J, Wang Y, Ren F, Jiao Y, et al. 2013. A novel immunoproteomics method for identifying in vivoinduced Campylobacter jejuni antigens using pre-adsorbed sera from infected patients. BBA Gen. Subjects 1830: 5229- 5235.   DOI   ScienceOn
20 Jagusztyn-Krynicka EK, Laniewski P, Wyszynska A. 2009. Update on Campylobacter jejuni vaccine development for preventing human campylobacteriosis. Expert. Rev. Vaccines 8: 625-645.   DOI   ScienceOn
21 Balaban M, Joslin SN, Hendrixson DR. 2009. FlhF and its GTPase activity are required for distinct processes in flagellar gene regulation and biosynthesis in Campylobacter jejuni. J. Bacteriol. 191: 6602-6611.   DOI   ScienceOn
22 Cordwell SJ, Len AC, Touma RG, Scott NE, Falconer L, Jones D, et al. 2008. Identification of membrane-associated proteins from Campylobacter jejuni strains using complementary proteomics technologies. Proteomics 8: 122-139.   DOI   ScienceOn
23 Woodall CA, Jones MA, Barrow PA, Hinds J, Marsden GL, Kelly DL, et al. 2005. Campylobacter jejuni gene expression in the chick cecum: evidence for adaptation to a low-oxygen environment. Infect. Immun. 73: 5278-5285.   DOI   ScienceOn
24 Young KT, Davis LM, Dirita VJ. 2007. Campylobacter jejuni: molecular biology and pathogenesis. Nat. Rev. Microbiol. 5: 665-679.   DOI   ScienceOn
25 Vigil PD, Alteri CJ, Mobley HLT. 2011. Identification of in vivo-induced antigens including an RTX family exoprotein required for uropathogenic Escherichia coli virulence. Infect. Immun. 79: 2335-2344.   DOI   ScienceOn
26 Wiesner RS, Hendrixson DR, DiRita VJ. 2003. Natural transformation of Campylobacter jejuni requires components of a type II secretion system. J. Bacteriol. 185: 5408-5418.   DOI
27 Gu H, Zhu H, Lu C. 2009. Use of in vivo-induced antigen technology (IVIAT) for the identification of Streptococcus suis serotype 2 in vivo-induced bacterial protein antigens. BMC Microbiol. 9: 201.   DOI   ScienceOn
28 Pappas MG, Hajkowski R, Hockmeyer WT. 1983. Dot enzyme-linked immunosorbent assay (Dot-ELISA): a micro technique for the rapid diagnosis of visceral leishmaniasis. J. Immunol. Methods 64: 205-214.   DOI   ScienceOn