• Title/Summary/Keyword: genome-wide association studies

Search Result 184, Processing Time 0.02 seconds

Gene-set based genome-wide association analysis for the speed of sound in two skeletal sites of Korean women

  • Kwon, Ji-Sun;Kim, Sangsoo
    • BMB Reports
    • /
    • v.47 no.6
    • /
    • pp.348-353
    • /
    • 2014
  • The speed of sound (SOS) value is an indicator of bone mineral density (BMD). Previous genome-wide association (GWA) studies have identified a number of genes, whose variations may affect BMD levels. However, their biological implications have been elusive. We re-analyzed the GWA study dataset for the SOS values in skeletal sites of 4,659 Korean women, using a gene-set analysis software, GSA-SNP. We identified 10 common representative GO terms, and 17 candidate genes between these two traits (PGS < 0.05). Implication of these GO terms and genes in the bone mechanism is well supported by the literature survey. Interestingly, the significance levels of some member genes were inversely related, in several gene-sets that were shared between two skeletal sites. This implies that biological process, rather than SNP or gene, is the substantial unit of genetic association for SOS in bone. In conclusion, our findings may provide new insights into the biological mechanisms for BMD.

Epidemiological and Genome-Wide Association Study of Gastritis or Gastric Ulcer in Korean Populations

  • Oh, Sumin;Oh, Sejong
    • Genomics & Informatics
    • /
    • v.12 no.3
    • /
    • pp.127-133
    • /
    • 2014
  • Gastritis is a major disease that has the potential to grow as gastric cancer. Gastric cancer is a very common cancer, and it is related to a very high mortality rate in Korea. This disease is known to have various reasons, including infection with Helicobacter pylori, dietary habits, tobacco, and alcohol. The incidence rate of gastritis has reported to differ between age, population, and gender. However, unlike other factors, there has been no analysis based on gender. So, we examined the high risk factors of gastritis in each gender in the Korean population by focusing on sex. We performed an analysis of 120 clinical characteristics and genome-wide association studies (GWAS) using 349,184 single-nucleotide polymorphisms from the results of Anseong and Ansan cohort study in the Korea Association Resource (KARE) project. As the result, we could not prove a strong relation with these factors and gastritis or gastric ulcer in the GWAS. However, we confirmed several already-known risk factors and also found some differences of clinical characteristics in each gender using logistic regression. As a result of the logistic regression, a relation with hyperlipidemia, coronary artery disease, myocardial infarction, hyperlipidemia therapy, hypotensive or antihypotensive drug, diastolic blood pressure, and gastritis was seen in males; the results of this study suggest that vascular disease has a potential association with gastritis in males.

Pure additive contribution of genetic variants to a risk prediction model using propensity score matching: application to type 2 diabetes

  • Park, Chanwoo;Jiang, Nan;Park, Taesung
    • Genomics & Informatics
    • /
    • v.17 no.4
    • /
    • pp.47.1-47.12
    • /
    • 2019
  • The achievements of genome-wide association studies have suggested ways to predict diseases, such as type 2 diabetes (T2D), using single-nucleotide polymorphisms (SNPs). Most T2D risk prediction models have used SNPs in combination with demographic variables. However, it is difficult to evaluate the pure additive contribution of genetic variants to classically used demographic models. Since prediction models include some heritable traits, such as body mass index, the contribution of SNPs using unmatched case-control samples may be underestimated. In this article, we propose a method that uses propensity score matching to avoid underestimation by matching case and control samples, thereby determining the pure additive contribution of SNPs. To illustrate the proposed propensity score matching method, we used SNP data from the Korea Association Resources project and reported SNPs from the genome-wide association study catalog. We selected various SNP sets via stepwise logistic regression (SLR), least absolute shrinkage and selection operator (LASSO), and the elastic-net (EN) algorithm. Using these SNP sets, we made predictions using SLR, LASSO, and EN as logistic regression modeling techniques. The accuracy of the predictions was compared in terms of area under the receiver operating characteristic curve (AUC). The contribution of SNPs to T2D was evaluated by the difference in the AUC between models using only demographic variables and models that included the SNPs. The largest difference among our models showed that the AUC of the model using genetic variants with demographic variables could be 0.107 higher than that of the corresponding model using only demographic variables.

Network Graph Analysis of Gene-Gene Interactions in Genome-Wide Association Study Data

  • Lee, Sungyoung;Kwon, Min-Seok;Park, Taesung
    • Genomics & Informatics
    • /
    • v.10 no.4
    • /
    • pp.256-262
    • /
    • 2012
  • Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has allowed us to perform genome-wide association studies (GWASs). For detecting the effects of multiple genes on complex traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR) is one of the powerful and efficient methods for detecting high-order gene-gene ($G{\times}G$) interactions. However, the biological interpretation of $G{\times}G$ interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network graph analysis to elucidate the meaning of identified $G{\times}G$ interactions. The proposed network graph analysis consists of three steps. The first step is for performing $G{\times}G$ interaction analysis using MDR analysis. The second step is to draw the network graph using the MDR result. The third step is to provide biological evidence of the identified $G{\times}G$ interaction using external biological databases. The proposed method was applied to Korean Association Resource (KARE) data, containing 8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform $G{\times}G$ interaction analysis of body mass index (BMI). Our network graph analysis successfully showed that many identified $G{\times}G$ interactions have known biological evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of $G{\times}G$ interactions.

HisCoM-PCA: software for hierarchical structural component analysis for pathway analysis based using principal component analysis

  • Jiang, Nan;Lee, Sungyoung;Park, Taesung
    • Genomics & Informatics
    • /
    • v.18 no.1
    • /
    • pp.11.1-11.3
    • /
    • 2020
  • In genome-wide association studies, pathway-based analysis has been widely performed to enhance interpretation of single-nucleotide polymorphism association results. We proposed a novel method of hierarchical structural component model (HisCoM) for pathway analysis of common variants (HisCoM for pathway analysis of common variants [HisCoM-PCA]) which was used to identify pathways associated with traits. HisCoM-PCA is based on principal component analysis (PCA) for dimensional reduction of single nucleotide polymorphisms in each gene, and the HisCoM for pathway analysis. In this study, we developed a HisCoM-PCA software for the hierarchical pathway analysis of common variants. HisCoM-PCA software has several features. Various principle component scores selection criteria in PCA step can be specified by users who want to summarize common variants at each gene-level by different threshold values. In addition, multiple public pathway databases and customized pathway information can be used to perform pathway analysis. We expect that HisCoM-PCA software will be useful for users to perform powerful pathway analysis.

Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals

  • Fan, Bin;Du, Zhi-Qiang;Gorbach, Danielle M.;Rothschild, Max F.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.23 no.7
    • /
    • pp.833-847
    • /
    • 2010
  • In the past decade, there have been many advances in whole-genome sequencing in domestic animals, as well as the development of "next-generation" sequencing technologies and high-throughput genotyping platforms. Consequently, these advances have led to the creation of the high-density SNP array as a state-of-the-art tool for genetics and genomics analyses of domestic animals. The emergence and utilization of SNP arrays will have significant impacts not only on the scale, speed, and expense of SNP genotyping, but also on theoretical and applied studies of quantitative genetics, population genetics and molecular evolution. The most promising applications in agriculture could be genome-wide association studies (GWAS) and genomic selection for the improvement of economically important traits. However, some challenges still face these applications, such as incorporating linkage disequilibrium (LD) information from HapMap projects, data storage, and especially appropriate statistical analyses on the high-dimensional, structured genomics data. More efforts are still needed to make better use of the high-density SNP arrays in both academic studies and industrial applications.

Analysis of the relationship between the end weight trait and the gene ADGRL2 in purebred landrace pigs using a Genome-wide association study

  • Kang, Ho-Chan;Kim, Hee-Sung;Lee, Jae-Bong;Yoo, Chae-Kung;Choi, Tae-Jeong;Lim, Hyun-Tae
    • Korean Journal of Agricultural Science
    • /
    • v.45 no.2
    • /
    • pp.238-247
    • /
    • 2018
  • The overall consumption of meat is increasing as the level of national income increases. The end weight is a trait closely associated with dressed meat. Genome-wide association study (GWAS) is an effective method of analyzing genetic variation and gene identification associated with a number of natural alternative traits because it can detect variations. So this paper did a GWAS analysis to identity the location on the genome related to the end weight in purebred landrace pigs and to explore the relevant candidate gene. This study identified a significant single nucleotide poly morphism (SNP) marker in chromosome 6 (ASGA0029422, $p=1.22{\times}10^{-6}$). Adhesion G protein-coupled receptor L2 (ADGRL2) was found to be the candidate gene at the identified SNP marker location. ADGRL2 genes have been found to be associated with cell development in relation to the external and internal environment of a cell. In addition, genotype and statistical analyses were done on nine variations on the exon of ADGRL2. The results show that the SNP marker (ASGA0029422, $p=1.32{\times}10^{-6}$) was significant, but the significance of the nine variations on the ADGRL2 exon was not verified. However, by performing further experiments and functional studies on other SNPs showing possible genetic ADGRL-Exon mutations, objects with high associations of high-end weights can be selected.

Multi-block Analysis of Genomic Data Using Generalized Canonical Correlation Analysis

  • Jun, Inyoung;Choi, Wooree;Park, Mira
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.33.1-33.9
    • /
    • 2018
  • Recently, there have been many studies in medicine related to genetic analysis. Many genetic studies have been performed to find genes associated with complex diseases. To find out how genes are related to disease, we need to understand not only the simple relationship of genotypes but also the way they are related to phenotype. Multi-block data, which is a summation form of variable sets, is used for enhancing the analysis of the relationships of different blocks. By identifying relationships through a multi-block data form, we can understand the association between the blocks in comprehending the correlation between them. Several statistical analysis methods have been developed to understand the relationship between multi-block data. In this paper, we will use generalized canonical correlation methodology to analyze multi-block data from the Korean Association Resource project, which has a combination of single nucleotide polymorphism blocks, phenotype blocks, and disease blocks.

A bioinformatic approach to identify pathogenic variants for Stevens-Johnson syndrome

  • Muhammad Ma'ruf;Justitia Cahyani Fadli;Muhammad Reza Mahendra;Lalu Muhammad Irham;Nanik Sulistyani;Wirawan Adikusuma;Rockie Chong;Abdi Wira Septama
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.26.1-26.9
    • /
    • 2023
  • Stevens-Johnson syndrome (SJS) produces a severe hypersensitivity reaction caused by Herpes simplex virus or mycoplasma infection, vaccination, systemic disease, or other agents. Several studies have investigated the genetic susceptibility involved in SJS. To provide further genetic insights into the pathogenesis of SJS, this study prioritized high-impact, SJS-associated pathogenic variants through integrating bioinformatic and population genetic data. First, we identified SJS-associated single nucleotide polymorphisms from the genome-wide association studies catalog, followed by genome annotation with HaploReg and variant validation with Ensembl. Subsequently, expression quantitative trait locus (eQTL) from GTEx identified human genetic variants with differential gene expression across human tissues. Our results indicate that two variants, namely rs2074494 and rs5010528, which are encoded by the HLA-C (human leukocyte antigen C) gene, were found to be differentially expressed in skin. The allele frequencies for rs2074494 and rs5010528 also appear to significantly differ across continents. We highlight the utility of these population-specific HLA-C genetic variants for genetic association studies, and aid in early prognosis and disease treatment of SJS.