DOI QR코드

DOI QR Code

Development and Application of High-density SNP Arrays in Genomic Studies of Domestic Animals

  • Fan, Bin (Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University) ;
  • Du, Zhi-Qiang (Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University) ;
  • Gorbach, Danielle M. (Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University) ;
  • Rothschild, Max F. (Department of Animal Science and Center for Integrated Animal Genomics, Iowa State University)
  • Published : 2010.07.01

Abstract

In the past decade, there have been many advances in whole-genome sequencing in domestic animals, as well as the development of "next-generation" sequencing technologies and high-throughput genotyping platforms. Consequently, these advances have led to the creation of the high-density SNP array as a state-of-the-art tool for genetics and genomics analyses of domestic animals. The emergence and utilization of SNP arrays will have significant impacts not only on the scale, speed, and expense of SNP genotyping, but also on theoretical and applied studies of quantitative genetics, population genetics and molecular evolution. The most promising applications in agriculture could be genome-wide association studies (GWAS) and genomic selection for the improvement of economically important traits. However, some challenges still face these applications, such as incorporating linkage disequilibrium (LD) information from HapMap projects, data storage, and especially appropriate statistical analyses on the high-dimensional, structured genomics data. More efforts are still needed to make better use of the high-density SNP arrays in both academic studies and industrial applications.

Keywords

References

  1. Abasht, B., E. Sandford, J. Arango, P. Settar, J. E. Fulton et al. 2009. Extent and consistency of linkage disequilibrium and identification of DNA markers for production and egg quality traits in commercial layer chicken populations. BMC Genomics 10 (Suppl 2):S2. https://doi.org/10.1186/1471-2164-10-S2-S2
  2. Altshuler, D., V. J. Pollara, C. R. Cowles, W. J. Van Ettern, J. Baldwin et al. 2000. An SNP map of the human genome generated by reduced representation shotgun sequencing. Nature 407: 513-516. https://doi.org/10.1038/35035083
  3. Amaral, A. J., H. J. Megens, H. H. D. Kerstens, H. C. M. Heuven, B. Dibbits et al. 2009. Application of massive parallel sequencing to whole genome SNP discovery in the porcine genome. BMC Genomics 10:374. https://doi.org/10.1186/1471-2164-10-374
  4. Amaral, A. J., H. J. Megens, R. P. M. A. Crooijmans, H. C. M. Heuven and M. A. M. Groenen. 2008. Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179: 569-579. https://doi.org/10.1534/genetics.107.084277
  5. Andersson, L. and M. Georges. 2004. Domestic-animal genomics: Deciphering the genetics of complex traits. Nat. Rev. Genet. 5: 202-212. https://doi.org/10.1038/nrg1294
  6. Andersson, L. 2009. Genome-wide association analysis in domestic animals: a powerful approach for genetic dissection of trait loci. Genetica 136:341-349. https://doi.org/10.1007/s10709-008-9312-4
  7. Arias, J. A., M. Keehan, P. Fisher, W. Coppieters and R. Spelman. 2009. A high density linkage map of the bovine genome BMC Genet. 10:18.
  8. Aulchenko, Y. S., D. J. de Koning and C. Haley. 2007. Genomewide rapid association using mixed model and regression: a fast and simple method for genomewide pedigree-based quantitative trait loci association analysis. Genetics 177:577-585. https://doi.org/10.1534/genetics.107.075614
  9. Awano, T., G. S. Johnson, C. M. Wade, M. L. Katz, G. C. Johnson et al. 2009. Genome-wide association analysis reveals a SOD1 mutation in canine degenerative myelopathy that resembles amyotrophic lateral sclerosis. Proc. Natl. Acad. Sci. USA 106:2794-2799. https://doi.org/10.1073/pnas.0812297106
  10. Bannasch, D., A. Young, J. Myers, K. Truve, P. Dickinson et al. 2009. Localization of canine Brachycephaly using an across breed mapping approach. PLoS ONE 5:e9632.
  11. Barendse, W., B. E. Harrison, R. J. Bunch, M. B. Thomas and L. B. Turner. 2009. Genome wide signatures of positive selection: The comparison of independent samples and the identification of regions associated to traits. BMC Genomics 10:178. https://doi.org/10.1186/1471-2164-10-178
  12. Barendse, W., A. Reverter, R. J. Bunch, B. E. Harrison, W. Barris and M. B. Thomas. 2007. A validated whole-genome association study of efficient food conversion in cattle. Genetics 176:1893-1905. https://doi.org/10.1534/genetics.107.072637
  13. Becker, D., J. Tetens, A. Brunner, D. Burstel, M. Ganter et al. 2010. Microphthalmia in Texel sheep is associated with a missense mutation in the paired-like homeodomain 3 (PITX3) gene. PLoS ONE 5:8689. https://doi.org/10.1371/journal.pone.0008689
  14. Brooks, S. A., N. Gabreski, D. Miller, A. Brisbin, H. E. Brown et al. 2010. Whole-genome SNP association in the horse: Identification of a deletion in Myosin Va responsible for Lavender Foal Syndrome. PLoS Genet. 6:e1000909. https://doi.org/10.1371/journal.pgen.1000909
  15. Cadieu, E., M. W. Neff, P. Quignon, K. Walsh, K. Chase et al. 2009. Coat variation in the domestic dog is governed by variants in three genes. Science 326:150-153. https://doi.org/10.1126/science.1177808
  16. Calus, M. P. L. 2009. Genomic breeding value prediction: methods and procedures. Animal 4:157-164.
  17. Charlier, C., W. Coppieters, H. Rollin, D. Desmecht, J. S. Agerholm et al. 2008. Highly effective SNP-based association mapping and management of recessive defects in livestock. Nat. Genet. 40:449-454. https://doi.org/10.1038/ng.96
  18. Dalrymple, B. P., E. F. Kirkness, M. Nefedov, S. McWilliam, A. Ratnakumar et al. 2007. Using comparative genomics to reorder the human genome sequence into a virtual sheep genome. Genome Biol. 8:R152. https://doi.org/10.1186/gb-2007-8-7-r152
  19. de Roos, A. P., B. J. Hayes, R. J. Spelman and M. E. Goddard. 2008. Linkage disequilibrium and persistence of phase in Holstein-Friesian, Jersey and Angus cattle. Genetics 179:1503-1512. https://doi.org/10.1534/genetics.107.084301
  20. Decker, J. E., J. C. Pires., G. C. Conant, S. D. McKay, M. P. Heaton et al. 2009. Resolving the evolution of extant and extinct ruminants with high-throughput phylogenomics. Proc. Natl. Acad. Sci. USA 106:18644-18649. https://doi.org/10.1073/pnas.0904691106
  21. Drogemuller, C., E. K. Karlsson, M. K. Hytonen, M. Perloski, G. Dolf et al. 2008. A mutation in hairless dogs implicates FOXI3 in ectodermal development. Science 321:1462. https://doi.org/10.1126/science.1162525
  22. Eck, S. H., A. Benet-Pages, K. Flisikowski, T. Meitinger, R. Fries and T. Storm. 2009. Whole genome sequencing of a single Bos taurus animal for single nucleotide polymorphism discovery. Genome Biol. 10:R82. https://doi.org/10.1186/gb-2009-10-8-r82
  23. Fan, B., S. K. Onteru, D. Garrick, K. J. Stalder and M. F. Rothschild. 2009. A genome-wide association study for pig production and feet and leg structure traits using the PorcineSNP60 BeadChip. Pig Genome III Conference, November 2-4, 2009, Hinxton, Cambridge, UK. Abstract No. 6.
  24. Fernando, R. L. and D. J. Garrick. 2009. GenSel - User manual for a portfolio of genomic selection related analyses. Animal Breeding and Genetics, Iowa State University, Ames.
  25. Feugang, J. M., A. Kaya, G. P. Page, L. Chen, T. Mehta et al. 2009. Two-stage genome-wide association study identifies integrin beta 5 as having potential role in bull fertility. BMC Genomics 10:176. https://doi.org/10.1186/1471-2164-10-176
  26. Fisher, P. J., B. Malthus, M. C. Walker, G. Corbett and R. J. Spelman. 2009. The number of single nucleotide polymorphisms and on-farm data required for whole-herd parentage testing in dairy cattle herds. J. Dairy Sci. 92:369-374. https://doi.org/10.3168/jds.2008-1086
  27. Flori, L., S. Fritz, F. Jaffrézic, M. Boussaha, I. Gu et al. 2009. The genome response to artificial selection: A case study in dairy cattle. PLoS ONE 4:e6595. https://doi.org/10.1371/journal.pone.0006595
  28. Georges, M. 2007. Mapping, fine mapping, and molecular dissection of quantitative trait loci in domestic animals. Annu. Rev. Genomics Hum. Genet. 8:131-162. https://doi.org/10.1146/annurev.genom.8.080706.092408
  29. Gianola, D., R. L. Fernando and A. Stella. 2006. Genomic-assisted prediction of genetic value with semiparametric procedures. Genetics 173:1761-1776. https://doi.org/10.1534/genetics.105.049510
  30. Goddard, M. E. 2009. Genomic selection: prediction of accuracy and maximisation of long term response. Genetica 136:245-257. https://doi.org/10.1007/s10709-008-9308-0
  31. Goddard, M. E. and B. J. Hayes. 2009. Mapping genes for complex traits in domestic animals and their use in breeding programmes. Nat. Rev. Genet. 10:381-391. https://doi.org/10.1038/nrg2575
  32. Gorbach, D. M., W. Cai, J. C. M. Dekkers, J. M. Young, D. J. Garrick et al. 2009. Whole-genome analyses for genes associated with residual feed intake and related traits utilizing the PorcineSNP60 BeadChip. Pig Genome III Conference. November 2-4. Hinxton, UK. Abstract No. 11.
  33. Green, E. D. 2001. Strategies for the systematic sequencing of complex genomes. Nat. Rev. Genet. 2: 573-583.
  34. Groenen, M. A. M., A. Amaral, H. J. Megens, G. Larson, A. L. Archibald et al. 2010a. The Porcine HapMap Project: genome-wide assessment of nucleotide diversity, haplotype diversity and footprints of selection in the pig. The International Plant & Animal Genome XVIII Conference. January 9-13, San Diego, California. W609.
  35. Groenen, M. A. M., P. Wahlberg, M. Foglio, H. H. Cheng, H. J. Megens et al. 2010b. A high-density SNP-based linkage map of the chicken genome reveals sequence features correlated with recombination rate. Genome Res. 19:510-519.
  36. Hayes, B. J., P. J. Bowman, A. J. Chamberlain, K. Savin, C. P. van Tassell et al. 2009a. A validated genome wide association study to breed cattle adapted to an environment altered by climate change. PLoS ONE 4:e6676. https://doi.org/10.1371/journal.pone.0006676
  37. Hayes, B. J., P. J. Bowman, A. J. Chamberlain and M. E. Goddard. 2009b. Genomic selection in dairy cattle: Progress and challenges. J. Dairy Sci. 92:433-443. https://doi.org/10.3168/jds.2008-1646
  38. Hindorff, L. A., P. Sethupathy, H. A. Junkins, E. M. Ramos, J. P. Mehta, F. S. Collins and T. A. Manolio. 2009. Potential etiologic and functional implications of genome-wide association loci for human diseases and traits. Proc. Natl. Acad. Sci. USA 106:9362-9367. https://doi.org/10.1073/pnas.0903103106
  39. Ibanez-Escriche, N., R. L. Fernando, A. Toosi and J. C. M. Dekkers. 2009. Genomic selection of purebred for crossbred performance. Genet. Sel. Evol. 41:12. https://doi.org/10.1186/1297-9686-41-12
  40. International Chicken Genome Sequencing Consortium. 2004. Sequence and comparative analysis of the chicken genome provide unique perspective on vertebrate evolution. Nature 432:695-716. https://doi.org/10.1038/nature03154
  41. International Chicken Polymorphism Map Consortium. 2004. A Genetic variation map for chicken with 2.8 million single-nucleotide polymorphism. Nature 432:717-722. https://doi.org/10.1038/nature03156
  42. Iso-Touru, T., J. Kantanen, M. H. Li, Z. Gizejewski and J. Vilkki. 2009. Divergent evolution in the cytoplasmic domains of PRLR and GHR genes in Artiodactyla. BMC Evol. Biol. 9:172. https://doi.org/10.1186/1471-2148-9-172
  43. Karlsson, E. K., I. Baranowska, C. M. Wade, N. S. Hillbertz, M. C. Zody et al. 2007. Efficient mapping of mendelian traits in dogs through genome-wide association. Nat. Genet. 39:1321-1328. https://doi.org/10.1038/ng.2007.10
  44. Kerstens, H. H. D., S. Kollers, A. Kommadath, M. del Rosario, B. Dibbits et al. 2009. Mining for single nucleotide polymorphism in pig genome sequence data. BMC Genomics 10:4. https://doi.org/10.1186/1471-2164-10-4
  45. Kijas, J. W., D. Townley, B. P. Dalrymple, M. P. Heaton, J. F. Maddox et al. 2009. A genome wide survey of SNP variation reveals the genetic structure of sheep breeds. PLoS ONE 4:e4668. https://doi.org/10.1371/journal.pone.0004668
  46. Kim, E. S. and B. W. Kirkpatrick. 2009. Linkage disequilibrium in the North American Holstein population. Anim. Genet. 40:279-288. https://doi.org/10.1111/j.1365-2052.2008.01831.x
  47. Kirkness, E. F., V. Bafna, A. L. Halpern, S. Levy, K. Remington et al. 2003. The dog genome: Survey sequencing and comparative analysis. Science 301:1898-1903. https://doi.org/10.1126/science.1086432
  48. Lindblad-Toh, K., C. M. Wade, T. S. Mikkelsen, E. K. Karlsson, D. B. Jaffe et al. Genome sequence, comparative analysis and haplotype structure of the domestic dog. Nature 438:803-819. https://doi.org/10.1038/nature04338
  49. Manolio, T. A., F. S. Collins, N. J. Cox, D. B. Goldstein, L. A. Hindorff et al. 2009. Finding the missing heritability of complex disease. Nature 461:747-753. https://doi.org/10.1038/nature08494
  50. Matukumalli, L. K., C. T. Lawley, R. D. Schnabel, J. F. Taylor, M. F. Allan et al. 2009. Development and characterization of a high density SNP genotyping assay for cattle. PLoS ONE 4:e5350. https://doi.org/10.1371/journal.pone.0005350
  51. Megens, H. J., R. P. M. A. Crooijmans, J. W. M. Bastiaansen, H. H. D. Kerstens, A. Coster et al. 2009. Comparison of linkage disequilibrium and haplotype diversity on macro- and microchromosomes in chicken. BMC Genet. 10:86.
  52. Meuwissen, T. H. E., B. J. Hayes and M. E. Goddard. 2001. Prediction of total genetic value using genome-wide dense marker maps. Genetics 157:1819-1829.
  53. Muir, W. M., G. K. S. Wong, Y. Zhang, J. Wang, M. A. M. Groenen et al. 2008. Genome-wide assessment of worldwide chicken SNP genetic diversity indicates significant absence of rare alleles in commercial breeds. Proc. Natl. Acad. Sci. USA 105:17312-17317. https://doi.org/10.1073/pnas.0806569105
  54. Murdoch, B. M., M. L. Clawson, W. W. Laegreid, P. Stothard, M. Settles et al. 2010. A 2cM genome-wide scan of European Holstein cattle affected by classical BSE. BMC Genet.11:20.
  55. Ogorevc, J., A. Razpet and P. Dovc. 2009. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim. Genet. 40:832-851. https://doi.org/10.1111/j.1365-2052.2009.01921.x
  56. Onteru, S. K., B. Fan, D. Garrick, K. J. Stalder and M. F. Rothschild. 2009. Whole genome analyses for pig reproductive traits using the PorcineSNP60 BeadChip. Pig Genome III Conference. November 2-4, 2009, Hinxton, Cambridge, UK. Abstract No. 5.
  57. Pant, S. D., F. S. Schenkel, C. P. Verschoor, Q. You, D. F. Kelton et al.. 2010. A principal component regression based genome wide analysis approach reveals the presence of a novel QTL on BTA7 for MAP resistance in holstein cattle. Genomics 95:176-182. https://doi.org/10.1016/j.ygeno.2010.01.001
  58. Parker, H. G., B. M. VonHoldt, P. Quignon, E. H. Margulies, S. Shao et al. 2009. An expressed fgf4 retrogene is associated with breed-defining chondrodysplasia in domestic dogs. Science 325:995-998. https://doi.org/10.1126/science.1173275
  59. Perkel, J. 2008. SNP genotyping: six technologies that keyed a revolution. Nat. Methods 5:447-453. https://doi.org/10.1038/nmeth0508-447
  60. Pontius, J. U., J. C. Mullikin, D. R. Smith, Agencourt Sequencing Team, K. Lindblad-Tohet et al. 2007. Initial sequence and comparative analysis of the cat genome. Genome Res. 17:1675-1689. https://doi.org/10.1101/gr.6380007
  61. Qanbari, S., E. C. G. Pimentel, J. Tetens, G. Thaller, P. Lichtner et al. 2010a. A genome-wide scan for signatures of recent selection in Holstein cattle. Anim. Genet. Published Online doi:10.1111/j.1365-2052.2009.02016.x
  62. Qanbari, S., E. C. G. Pimentel, J. Tetens, G. Thaller, P. Lichtner et al. 2010b. The pattern of linkage disequilibrium in German Holstein cattle. Anim. Genet. Published Online doi:10.1111/j.1365-2052.2009.02011.x
  63. Ramos, A. M., R. P. M. A. Crooijmans, N. A. Affara, A. J. Amaral, A. L. Archibald et al. 2009. Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4: e6524. https://doi.org/10.1371/journal.pone.0006524
  64. Rothschild, M. F., Z. L. Hu and Z. H. Jiang. 2007. Advances in QTL mapping in pigs. Int. J. Biol. Sci. 3:192-197.
  65. Rothschild, M. F., D. M. Gorbach, B. Fan, S. K. Onteru, Z. Q. Du et al. 2010. Applications of new porcine genomic tools to trait discovery and understanding genomic architecture. The International Plant & Animal Genome XVIII Conference. January 9-13, San Diego, California. W614.
  66. Rubin, C. J., M. C. Zody, J. Eriksson, J. R. S. Meadows, E. Sherwood et al. 2010. Whole-genome resequencing reveals loci under selection during chicken domestication. Nature 464:587-591. https://doi.org/10.1038/nature08832
  67. Sabeti, P. C., P. Varilly, B. Fry, J. Lohmueller, E. Hostetter et al. 2007. Genome-wide detection and characterization of positive selection in human populations. Nature 449:913-918. https://doi.org/10.1038/nature06250
  68. Settles, M., R. Zanella, S. D. McKay, R. D. Schnabel, J. F. Taylor et al. 2009. A whole genome association analysis identifies loci associated with Mycobacterium avium subsp. paratuberculosis infection status in US Holstein cattle. Anim. Genet. 40:655-662. https://doi.org/10.1111/j.1365-2052.2009.01896.x
  69. Sherman, E. L., J. D. Nkrumah and S. S. Moore. 2010. Whole genome single nucleotide polymorphism associations with feed intake and feed efficiency in beef cattle. J. Anim. Sci. 88:16-22. https://doi.org/10.2527/jas.2008-1759
  70. Snelling, W. M., M. F. Allan, J. W. Keele, L. A. Kuehn, T. McDaneld, T. P. L. Smith, T. S. Sonstegard, R. M. Thallman and G. L. Bennett. 2010. Genome-wide association study of growth in crossbred beef cattle. J. Anim. Sci. 88:837-848. https://doi.org/10.2527/jas.2009-2257
  71. Steemers, F. J. and K. L. Gunderson. 2007. Whole genome genotyping technologies on the $BeadArray^{TM}$ platform. Biotechnol. J. 2:41-49. https://doi.org/10.1002/biot.200600213
  72. Sved, J. A. 1971. Linkage disequilibrium and homozygosity of chromosome segments in finite populations. Theor. Popul. Biol. 2:125-141. https://doi.org/10.1016/0040-5809(71)90011-6
  73. The Bovine Genome Sequencing and Analysis Consortium. 2009. The genome sequence of Taurine cattle: A window to ruminant biology and evolution. Science 324:522-528. https://doi.org/10.1126/science.1169588
  74. The Bovine HapMap Consortium. 2009. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science 324:528-532. https://doi.org/10.1126/science.1167936
  75. Toosi, A., R. L. Fernando and J. C. M. Dekkers. 2010. Genomic selection in admixed and crossbred populations. J. Anim. Sci. 88:32-46. https://doi.org/10.2527/jas.2009-1975
  76. Van Tassell, C. P., T. P. L. Smith, L. K. Matukumalli, J. F. Taylor, R. D. Schnabel et al. 2008. SNP discovery and allele frequency estimation by deep sequencing of reduced representation libraries. Nat. Methods 5:247-252. https://doi.org/10.1038/nmeth.1185
  77. VanRaden, P. and P. G. Sullivan. 2010. International genomic evaluation methods for dairy cattle. Genet. Sel. Evol. 42:7. https://doi.org/10.1186/1297-9686-42-7
  78. VanRaden, P. M., C. P. Van Tassell, G. R. Wiggans, T. S. Sonstegard, R. D. Schnabel et al. 2009. Reliability of genomic prediction s for North American Holstein bulls. J. Dairy Sci. 92:16-24. https://doi.org/10.3168/jds.2008-1514
  79. Verbyla, K. L., B. J. Hayes, P. J. Bowman and M. E. Goddard. 2009. Accuracy of genomic selection using stochastic variable selection in Australian Holstein Friesian dairy cattle. Genet. Res. Camb. 91:307-311. https://doi.org/10.1017/S0016672309990243
  80. Villa-Angulo, R., L. K. Matukumalli, C. A. Gill, J. Choi, C. P. Van Tassell and J. J. Grefenstette. 2009. High-resolution haplotype block structure in the cattle genome. BMC Genet. 10:19.
  81. vonHoldt, B. M., J. P. Pollinger, K. E. Lohmueller, E. Han, H. G. Parker et al. Genome-wide SNP and haplotype analyses reveal a rich history underlying dog domestication. Nature 464:898-902. https://doi.org/10.1038/nature08837
  82. Wade, C. M., E. Giulotto, S. Sigurdsson, M. Zoli, S. Gnerre et al. 2009. Genome sequence, comparative analysis, and population genetics of the domestic horse. Science 326:865-867. https://doi.org/10.1126/science.1178158
  83. Weller, J. I., G. Glick, Y. Zeron, E. Seroussi and M. Ron. 2010. Paternity validation and estimation of genotyping error rate for the BovineSNP50 BeadChip. Anim. Genet. Published online doi:10.1111/j.1365-2052.2010.02035.x
  84. Wernersson, R., M. H. Schierup, F. G. Jorgensen, J. Gorodkin, F. Panitz et al. 2005. Pigs in sequence space: A 0.66× coverage pig genome survey based on shotgun sequencing. BMC Genomics 6:70. https://doi.org/10.1186/1471-2164-6-70
  85. Wiedmann, R. T., T. P. L. Smith and D. J. Nonneman. 2008. SNP discovery in swine by reduced representation and high throughput pryosequencing. BMC Genet. 9:81.
  86. Wilbe, M., P. Jokinen, K. Truve, E. H. Seppala, E. K. Karlsson et al. 2010. Genome-wide association mapping identifies multiple loci for a canine SLE-related disease complex. Nat. Genet. 42: 250-254. https://doi.org/10.1038/ng.525
  87. Wood, S. H., X. Y. Ke, T. Nuttall, N. McEwan, W. E. Ollier et al. 2009. Genome-wide association analysis of canine atopic dermatitis and identification of disease related SNPs. Immunogenetics 61:765-772. https://doi.org/10.1007/s00251-009-0402-y
  88. Zhao, X., H. T. Blair, S. Onteru, S. A. Piripi, M. F. Rothschild et al. 2010. A genome wide association study and fine mapping for Chondrodysplasia of Texel sheep. The International Plant & Animal Genome XVIII Conference. January 9-13, San Diego, California. P579.

Cited by

  1. Genomic Selection: Status in Different Species and Challenges for Breeding vol.48, pp.09366768, 2013, https://doi.org/10.1111/rda.12201
  2. Development and Evaluation of SoySNP50K, a High-Density Genotyping Array for Soybean vol.8, pp.1, 2013, https://doi.org/10.1371/journal.pone.0054985
  3. Cross-Amplification and Validation of SNPs Conserved over 44 Million Years between Seals and Dogs vol.8, pp.7, 2013, https://doi.org/10.1371/journal.pone.0068365
  4. Design and Characterization of a 52K SNP Chip for Goats vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0086227
  5. Genome-wide association studies for feed intake and efficiency in two laying periods of chickens vol.47, pp.1, 2015, https://doi.org/10.1186/s12711-015-0161-1
  6. Accuracy of prediction of simulated polygenic phenotypes and their underlying quantitative trait loci genotypes using real or imputed whole-genome markers in cattle vol.47, pp.1, 2015, https://doi.org/10.1186/s12711-015-0179-4
  7. Identification of new single nucleotide polymorphisms affecting total number born and candidate genes related to ovulation rate in Chinese Erhualian pigs vol.48, pp.1, 2016, https://doi.org/10.1111/age.12492
  8. Footprints of domestication revealed by RAD-tag resequencing in loquat: SNP data reveals a non-significant domestication bottleneck and a single domestication event vol.18, pp.1, 2017, https://doi.org/10.1186/s12864-017-3738-y
  9. Evaluation of Bovine High-Density SNP Genotyping Array in Indigenous Dairy Cattle Breeds pp.1532-2378, 2018, https://doi.org/10.1080/10495398.2017.1329150
  10. The development and application of genomic selection as a new breeding paradigm vol.2, pp.1, 2012, https://doi.org/10.2527/af.2011-0027
  11. The Importance of Endophenotypes to Evaluate the Relationship between Genotype and External Phenotype vol.18, pp.2, 2017, https://doi.org/10.3390/ijms18020472
  12. Detecting genetic regions associated with height in the native ponies of the British Isles by using high density SNP genotyping vol.61, pp.10, 2018, https://doi.org/10.1139/gen-2018-0006
  13. Genomewide association of male reproductive traits in Aksaray Malakli dogs pp.09366768, 2018, https://doi.org/10.1111/rda.13302
  14. Genetic Improvement in South African Livestock: Can Genomics Bridge the Gap Between the Developed and Developing Sectors? vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00331
  15. Genome re-sequencing to identify single nucleotide polymorphism markers for muscle color traits in broiler chickens vol.31, pp.1, 2018, https://doi.org/10.5713/ajas.17.0479
  16. Genomic diversity and population structure of three autochthonous Greek sheep breeds assessed with genome-wide DNA arrays vol.293, pp.3, 2018, https://doi.org/10.1007/s00438-018-1421-x
  17. Gene co-expression networks associated with carcass traits reveal new pathways for muscle and fat deposition in Nelore cattle vol.20, pp.1, 2019, https://doi.org/10.1186/s12864-018-5345-y
  18. Genomic Selection in Aquaculture: Application, Limitations and Opportunities With Special Reference to Marine Shrimp and Pearl Oysters vol.9, pp.1664-8021, 2018, https://doi.org/10.3389/fgene.2018.00693
  19. Application of Linkage Disequilibrium Mapping Methods to Detect QTL for Carcass Quality on Chromosome 6 Using a High Density SNP Map in Hanwoo vol.24, pp.4, 2010, https://doi.org/10.5713/ajas.2011.11019
  20. The identification of 14 new genes for meat quality traits in chicken using a genome-wide association study vol.14, pp.None, 2010, https://doi.org/10.1186/1471-2164-14-458
  21. Genome wide analysis reveals single nucleotide polymorphisms associated with fatness and putative novel copy number variants in three pig breeds vol.14, pp.None, 2013, https://doi.org/10.1186/1471-2164-14-784
  22. Reducing Foodborne Pathogen Persistence and Transmission in Animal Production Environments: Challenges and Opportunities vol.4, pp.4, 2010, https://doi.org/10.1128/microbiolspec.pfs-0006-2014
  23. Genomic variants identified from whole-genome resequencing of indicine cattle breeds from Pakistan vol.14, pp.4, 2010, https://doi.org/10.1371/journal.pone.0215065
  24. Genomic regions influencing intramuscular fat in divergently selected rabbit lines vol.51, pp.1, 2010, https://doi.org/10.1111/age.12873
  25. A genomewide association study in divergently selected lines in rabbits reveals novel genomic regions associated with litter size traits vol.137, pp.2, 2020, https://doi.org/10.1111/jbg.12451
  26. Genomic Tools for the Conservation and Genetic Improvement of a Highly Fragmented Breed—The Ramo Grande Cattle from the Azores vol.10, pp.6, 2020, https://doi.org/10.3390/ani10061089
  27. Microsatellite Diversity and Phylogenetic Relationships among East Eurasian Bos taurus Breeds with an Emphasis on Rare and Ancient Local Cattle vol.10, pp.9, 2010, https://doi.org/10.3390/ani10091493
  28. Oilseed rape straw returning changes soil reducibility and affects the root and yield of rice in the rape‐rice rotation field at Sichuan Basin area of China vol.112, pp.6, 2020, https://doi.org/10.1002/agj2.20408
  29. Toward Genome-Based Selection in Asian Seabass: What Can We Learn From Other Food Fishes and Farm Animals? vol.12, pp.None, 2021, https://doi.org/10.3389/fgene.2021.506754
  30. Genetic variations in the Myostatin gene affecting growth traits in sheep vol.14, pp.2, 2010, https://doi.org/10.14202/vetworld.2021.475-482
  31. Suitability of GWAS as a Tool to Discover SNPs Associated with Tick Resistance in Cattle: A Review vol.10, pp.12, 2010, https://doi.org/10.3390/pathogens10121604
  32. Association analysis of the ovine KAP6-1 gene and wool traits in Barki sheep vol.32, pp.6, 2021, https://doi.org/10.1080/10495398.2020.1749064