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Most common complex traits, such as obesity, hypertension, diabetes, and cancers, are known to be associated with multiple 
genes, environmental factors, and their epistasis. Recently, the development of advanced genotyping technologies has 
allowed us to perform genome-wide association studies (GWASs). For detecting the effects of multiple genes on complex 
traits, many approaches have been proposed for GWASs. Multifactor dimensionality reduction (MDR) is one of the powerful 
and efficient methods for detecting high-order gene-gene (GxG) interactions. However, the biological interpretation of GxG 
interactions identified by MDR analysis is not easy. In order to aid the interpretation of MDR results, we propose a network 
graph analysis to elucidate the meaning of identified GxG interactions. The proposed network graph analysis consists of 
three steps. The first step is for performing GxG interaction analysis using MDR analysis. The second step is to draw the 
network graph using the MDR result. The third step is to provide biological evidence of the identified GxG interaction using 
external biological databases. The proposed method was applied to Korean Association Resource (KARE) data, containing 
8838 individuals with 327,632 single-nucleotide polymorphisms, in order to perform GxG interaction analysis of body mass 
index (BMI). Our network graph analysis successfully showed that many identified GxG interactions have known biological 
evidence related to BMI. We expect that our network graph analysis will be helpful to interpret the biological meaning of GxG 
interactions.

Keywords: gene-gene interaction, generalized multifactor dimensionality reduction, genome-wide association study, graph 
analysis, graphic processing units, network graph

Introduction

In recent years, a significant advance of technology has 
been achieved in both genotyping and computing fields, 
which has enabled us to perform large-scale genome-wide 
association studies (GWASs) [1, 2]. GWASs have provided 
enormous potential in identifying genetic variants for 
common complex diseases. By GWASs, researchers have dis-
covered many genetic variants that affect common complex 
traits, such as height, type 2 diabetes, and blood pressure 
[3-5].

In particular, the nature of obesity is related with many 
chronic diseases, such as type 2 diabetes, cardiovascular 
disease, and cancers [6-8]. In addition, it has been found that 
obesity may be caused by multiple genes, environmental 
factors, and those interactions [9-11].

In order to identify the genes associated with obesity, body 
mass index (BMI) has been commonly used as an obesity- 
related phenotype or trait in GWASs. Many studies have 
reported that the genetic variants in FTO are associated with 
BMI [12, 13]. Most of these studies have used the single 
single-nucleotide polymorphism (SNP) approach, in which 
each single susceptible locus is searched in association with 
obesity. The single SNP approach has long been used in 
detecting genetic traits, and it is especially optimal for 
Mendelian traits. However, complex traits are well known to 
be caused by multiple genetic factors as well as several 
environmental factors and their interactions. Thus, the 
single SNP approach is not appropriate for detecting multi-
ple genetic factors affecting common complex polygenic 
traits.

For the identification of multiple and joint genetic factors 
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associated with complex traits, the multifactor dimensio-
nality reduction (MDR) method has been proposed by 
Ritchie et al. [14] and applied in detecting gene-gene (GxG) 
interactions [15, 16]. However, their approach can be app-
lied only to binary traits, and the covariates that may affect 
the phenotype can not be adjusted. In order to overcome 
these drawbacks, generalized MDR (GMDR) analysis was 
proposed by Lou et al. [17], in which both binary and 
quantitative traits can be considered phenotypes while 
adjusting for covariates.

Although MDR and GMDR have been widely used to 
detect GxG interactions in genetic association studies, their 
applications have been mainly involved in dealing with 
candidate genes or a small set of genes. Since enormous com-
putational complexity and high-speed computing resources 
are required in GWASs, neither MDR nor GMDR has been 
successfully applied to GWASs. In order to overcome these 
computational limitations, we previously proposed an 
efficient stepwise approach to identify GxG interactions for 
GWAS data [18] using cuGWAM, a graphic processing units 
(GPU)-based MDR program [19].

However, it still remains a challenge to have a biological 
interpretation of the identified GxG interactions. In order to 
elucidate the identified GxG interactions, we propose a net-
work graph analysis. Our network analysis method focuses 
not only on the biological meaning but also on the strength 
of interaction.

We applied our network graph approach to Korean Asso-
ciation Resource (KARE) data for GxG interactions and its 
interpretation. We first performed GMDR analysis for BMI. 
Using our network graph analysis, we then identified several 
GxG interactions having reasonable biological interpretation 
from the network graph using public biological resources.

Methods
The KARE data

The KARE project, established as part of the Korean 
Genome Epidemiology Study (KoGES) in 2001, has started 
to undertake a large-scale genome-wide association analysis 
in Korean population-based cohort. These cohorts consist of 
10,038 participants in the urban Ansan (n = 5,020) and rural 
Ansung (n = 5,018) communities. The objective of the KARE 
project is to identify genetic factors of several clinical traits 
and lifestyle-related diseases by GWAS, based on population- 
based cohorts. In this analysis, we focused on BMI, one of 
more than 260 lifestyle-related traits.

DNA samples were isolated from the peripheral blood of 
all participants and were genotyped with Affymetrix Ge-
nome-Wide Human SNP array 5.0 (Affymetrix, Rockville, 
MD, USA). Genotypes were called using Bayesian Robust 

Linear Modeling using the Mahalanobis distance (BRLMM) 
algorithm [20]. We performed a quality control process for 
the sample and genotype as previously described in Cho et al. 
[2]. In order to increase the coverage of common variants 
and capture additional association signals, we performed 
SNP imputation with PLINK using the Japanese/Chinese 
(JPT/CHB) component of HapMap as the reference. After 
sample and genotype quality controls, 327,872 SNPs for 
8,842 individuals were available in the KARE data. We 
applied our proposed regularization method to Korean 
genome-wide data. 

Network graph analysis

GMDR analysis step
GWAS datasets usually have enormous number of mar-

kers, which causes a severe computational burden. In order 
to deal with this computation problem, the single SNP 
association test with covariate adjustment is performed to all 
SNPs in a dataset. This step can be achieved via several 
toolkits that support regression analysis, such as PLINK. 
Filtering by specific criteria, such as p-value, is subsequently 
performed in order to reduce the number of SNPs.

With the selected SNPs from the single SNP association 
analysis, exhaustive two-way GMDR analysis is then applied. 
However, general toolkits supporting GMDR analysis can 
only handle hundreds of SNPs. Although the number of 
SNPs in this step can be reduced by giving more stringent 
criteria, it may ignore the SNPs having marginally less 
significant effects. In addition, a scheme to reduce over-
fitting, such as cross-validation, requires increased linear 
computation time. In order to solve this problem, faster 
toolkits are recommended, such as GPU-based GMDR 
analysis toolkits like cuGWAM [19].

Since the number of combinations in GMDR analysis is 
usually very large, all results of GMDR can not be stored. 
Thus, a criterion is needed to store the specific interactions 
satisfying the criterion, such as balanced accuracy (BA).

Network graph construction
Network graph is often used to visualize multiple sets of 

interactions. It consists of nodes and edges connecting two 
nodes. For simplicity of representation, we focus on two-way 
interactions. Since the two-way interaction is for the relation-
ship between two variables, it can be easily represented as a 
graph that contains two nodes representing two variables of 
interaction and an edge corresponding to the interaction. 
According to this scheme, all interactions identified by 
GMDR analysis can be visualized in the network graph. 

However, this scheme can cause too complex a graph 
structure when the number of interactions is large. Thus, it 
is recommended to select a certain number of possible 
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Table 2. Result of two-way interaction test

Gene No. of 
nearby SNPs

No. of 
interactions Associated genes

ATP10B 156 189 CHUK, CBARA1, SLIT3,
 WDR37, WWOX,
 NAV2, SLC10A7,
 NDUFB8, NDUFC2,
 NDUFS2, COX5A, etc.

FTO  19  52 NT5C2, AS3MT, CNNM2
rs1281296  42  42 TMCO5, TFAP2D,

 RAPGEF1
NAV2  17  18 JAKMIP2
SLC10A7  18  18 CDH13, ATP10B,

 R3HDM1
WDR37   9  15 RPGRIP1L, DNAJC15
PDZRN4   3   9 LOC301738
NRXN3   1   1 GRM8

Bold letters indicates already identified for the relationship of 
obesity. 
SNP, single nucleotide polymorphism.

Table 1. Top 10 SNPs from linear regression analysis

SNP Chr no. Position p-value Gene

rs17178527  6 14,194,7773 2.24 × 10－8 -
rs9939609 16 52,378,028 1.43 × 10－6  FTO
rs11000212 10 73,625,658 1.45 × 10－6  ASCC1
rs9926289 16 52,378,004 2.45 × 10－6  FTO
rs8050136 16 52,373,776 2.68 × 10－6  FTO
rs527248  1 176,142,137 2.98 × 10－6 -
rs7193144 16 52,368,187 3.30 × 10－6  FTO
rs17130257  1 88,342,965 2.33 × 10－5 -
rs17089410 13 71,963,496 2.38 × 10－5 -
rs16953563 15 64,473,824 3.09 × 10－5  MAP2K1

SNP, single nucleotide polymorphism.

interactions in the network graph to reduce the complexity 
of the network graph. Alternatively, the complexity of the 
network graph can be reduced by gene mapping information. 
Since many SNPs are placed in a gene or adjacent to a gene, 
it is possible to annotate multiple SNPs into a single node of 
a gene according to their position. However, this approach 
requires a delicate mapping process.

In addition, the network graph can represent the strength 
of the interaction by the thickness of the edge－that is, the 
higher the number of interactions between two nodes, the 
thicker the edge becomes. 

Network graph analysis
It is important to derive a reasonable biological inter-

pretation of identified GxG interactions. Here, we propose a 
network graph analysis step to aid the biological interpre-
tation of the identified GxG interaction by using existing 
biological resources. In other words, the goal of this step is 
to find known biological evidence that supports the iden-
tified GxG interactions. 

Resources used in this step consist of either a pair of a 
marker and target or two related markers, where a marker 
corresponds to a gene or SNP and a target represents a 
biologically proven target related with a marker. From a 
resource with marker and target information, such as 
HuGENet [21], miRBase [22], and is-rSNP [23], we simply 
assume that there is biological evidence if two SNPs within 
an interaction share the same biological target defined in the 
biological resource. For resources, such as COXPRESdb 
[24], having information about the correlation among genes, 
we assume that all correlated genes in these resources have 
biological interactions. Although this is a naïve assumption, 
the use of these resources is mainly to support the inter-
actions identified by GMDR analysis. Note that many known 
biological resources have their own unique data structures 
that differ from each other. Consequently, the integration of 

multiple resources is recommended in order to provide 
further biological evidence for a given GxG interaction.

Results

In our GMDR analysis using KARE data, we first per-
formed the single SNP association test via PLINK (http:// 
pngu.mgh.harvard.edu/~purcell/plink/) using a linear re-
gression model with covariate adjustment of age, area, and 
sex. We used the p-value from linear regression as a criterion 
of screening and used a p-value threshold of 3 × 10－1 for the 
screening process; 101,837 SNPs were carried out after the 
screening process, as a result of the single SNP association 
test. The top 10 SNPs with the smallest p-values are listed in 
Table 1. The GMDR analysis was then performed using our 
GPU-based software, cuGWAM [19], in order to evaluate all 
possible two-way interactions and used a 10-fold cross- 
validation scheme, with covariate adjustment of age, area, 
and sex. An exhaustive search for two-way interactions from 
the selected SNPs took 19 h on the GPU system with three 
GTX285 graphic cards. In this step, a total of 51,853,363,660 
possible two-way interaction models were evaluated. 

In GMDR analysis, 10-fold cross-validation was used. For 
each cross-validation set, the top 10,000 interactions with 
the highest test BAs were selected, where BA is defined as 
the arithmetic mean of sensitivity and specificity [25]. We 
then calculated cross-validation consistency (CVC), which 
represents how many times the same two-way interaction is 
selected out of 10 cross-validation sets. Finally, we perfor-
med a screening step for every pair of interactions achieved 
from GMDR analysis that satisfied the two criteria, CVC ≥ 
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Fig. 1. Visualized result of significant interactions that have their cross-validation consistency ≥9. Arranged for readability: gray background
indicates hub node, and red, white, blue, and yellow names indicate that they are identified for their relation with obesity, single-nucleotide 
polymorphism, gene, and unidentified gene locus, respectively.

Fig. 2. A visualization of gene-gene interaction interpretation with
biological knowledge. Two red circles denote two single-nucleotide
polymorphisms (SNPs) within a two-way interaction, and purple 
circles denote corresponding genes against two SNPs. Gray circles
denote diseases that are known to be related with both of the genes.
Yellow and orange circles denote a disrupted transcriptional factor
by both of the two SNPs and gene sets including genes from both
SNPs, respectively.

Table 3. Single nucleotide polymorphisms (SNPs) with weak 
marginal effect and strong interaction

SNP Chr no. Position p-value Gene

rs16972967 18 36,089,458 0.2028 ATP10B
rs1010527  5 13,561,265 0.1999 PDZRN4
rs17761748  4 88,928,807 0.2761 FTO
rs7191753 16 62,342,166 0.2511 ATP10B

9 and test BA ≥ 0.5. 
Finally, we found 524 two-way interactions under these 

screening criteria. Among these interactions, 127 are from 
genes that are known to be associated with obesity and are 
summarized in Table 2. Among these interactions, five 
genes－FTO, CBARA1, CHUK, SLIT3, and NRXN3－and 59 
SNPs have been reported in previous studies [15, 16, 26-29]. 
Visualization of these 524 two-way interactions into a net-
work graph was then made after annotating SNPs to the 
genes. We used Gephi (https://gephi.org) as a visualization 
tool. Gene annotation was performed according to the hg18 
human genome reference and dbSNP 129. These 524 two- 
way interactions are displayed in the network graph (Fig. 1). 
Each node represents either an SNP or gene. If a SNP is 
annotated to a known gene, then it is denoted by the gene 
name. The number of interactions between nodes was 
represented as the thickness of the edge. For example, node 
FTO has a very thick edge with node NT5C2. Conversely, 
some nodes have a large number of nodes that are connected 
with it. We call these nodes hub nodes or hub SNPs. Hub 
nodes are represented by a gray background color. 

We investigated which SNPs that were included in the 524 

two-way interactions are related with obesity using DAVID 
[30], a comprehensive set of functional annotation tools. As 
a result, we detected six genes－NDUFA8, NDUFB8, 
NDUFC2, NDUFS2, COX5A, and ATP6V1B2. The role of 
these genes in the metabolism pathway is related to 
oxidative phosphorylation, which plays an important role of 
hepatic mitochondrial function in the development of 
obesity [31]. 

Among the 524 two-way interactions, some SNPs might 
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Table 4. Short summary of biological knowledge used in this study 

DB name Url Description

 HuGENet http://hugenavigator.net A database of published, population-based epidemiological studies of
 human genes extracted and curated from PubMed

 COXPRESdb http://coxpresdb.jp A database of providing a co-regulated gene and its correlation via
 integration of thousands of gene expression experiments

 miRBase http://mirbase.org A searchable database of published miRNA sequences and annotation
 is-rSNP http://www.genomics.csse.unimelb.edu.au/

 product-is-rSNP.php
A software tool that predicts whether an SNP is an rSNP using statistical
 framework

SNP, single nucleotide polymorphism.

Table 5. Proportion of known biological interactions by cross- 
validation consistency (CVC)

CVC Biological interaction known/
Total no. of interactions Proportion (%)

10  69/179 39
 9  65/345 19
 8  99/623 16
 7 114/691 16

have weak main effects but have strong interactions with 
other SNPs. Table 3 shows the SNPs from hub genes that 
show significant two-way interactions with other SNPs but 
have weak marginal effects in the single SNP analysis.

For the network graph analysis, four public databases 
(HuGENet [21], COXPRESdb [24], miRBase [22], and is- 
rSNP [23]) were collected and used to investigate the 
biological relationship between two SNPs with an inter-
action. A short summary of each database is given in Table 4. 
All databases used in this study were converted from the 
original bulk to a database table with automated script for 
the integrated investigation. The script for this conversion 
can be provided upon request. 

In order to improve the biological relevance of the inter-
pretation, we excluded all interactions having linkage dis-
equilibrium (LD) between two SNPs. One of the results of 
the network graph analysis is given in Fig. 2. We identified at 
least one line of biological evidence among 26% of the 524 
GxG interactions.

In order to investigate the relationship between CVC and 
the rate of biological evidence, we performed an additional 
network analysis using 1,838 interactions (CVC ≥ 7) and 
found out that there was a strong relationship between CVC 
of the GMDR analysis and the presence of known biological 
evidence. As shown in Table 5, the proportion of interactions 
having a known biological interaction was significantly 
higher when CVC = 10 than when 7 ≤ CVC ＜ 10 (39% vs. 
17% on average). In addition, from the network analysis of 
179 interactions having CVC = 10, 69 interactions showed 

biological evidence and 30 (43% of 69) shared a known 
relationship against BMI-related diseases, such as cardio-
vascular disease, body weight, hypertension.

Discussion

The main purpose of a GWAS is to detect genetic variants 
represented by a single SNP or a set of SNPs that are 
associated with common complex polygenic traits of interest 
[2, 4, 5, 16, 17]. However, it is commonly known that 
multiple genetic factors as well as several environmental 
factors and their interactions are involved in causing 
complex diseases. Thus, the single SNP approach is not 
appropriate for detecting multiple genetic factors for com-
mon complex polygenic traits. Recently, many researchers 
have tried GxG interaction analysis in GWASs. However, 
they focused on rather restricted regions with a small 
number of SNPs due to computational complexity [32, 33].

In this paper, we have successfully performed two-way 
GxG interaction analysis of 8,838 individuals with the 
selected 101,837 SNPs, which cover most genomic regions. 
It became possible with the help of a GPU-based system with 
three GPU graphic cards. It took only 19 h to perform 
51,853,363,660 possible two-way interaction analyses with 
10-fold cross-validation.

Our results showed that the FTO, CBARA1, CHUK, SLIT3, 
and NRXN3 genes are strongly associated with obesity. In 
addition, our approach provided more information about 
possible GxG interactions. Note that some SNPs having 
weak main effects showed strong interactions with other 
SNPs (Table 3). It would have been very difficult to detect 
these SNPs through single SNP analysis, which demon-
strates the usefulness of our approach in detecting GxG 
interactions.

In addition, our analysis provided some novel interactions 
that have not been reported in previous studies. For 
example, 9 SNPs from the FTO gene were found to have 
interactions with SNPs from CNNM2, AS3MT, and NT5C2. 
Similar interactions were found between LOC301738 and 
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PDZRN4, as shown in Fig. 1.
Our network graph summarizes two-way interactions 

between SNPs very efficiently. We expect that this visuali-
zation tool could be helpful to researchers. It is also quite 
efficient to identify specific patterns and hub genes. 

Through our network graph analysis, we also identified 
several pieces of evidence that supported the identified 
interactions with known biological information. From the 
investigation with four published databases, we found that 
39% of a total of 179 interactions with CVC = 10 are known 
to have biological interactions from the four databases we 
collected. In addition, our network graph analysis showed a 
higher identification rate of shared biological relevance 
when the CVC was large than when the CVC was low, which 
suggests that interactions having a high value of CVC tend to 
share more known biological evidence that are actually 
related the phenotype. 

In summary, our network graph analysis from GxG inter-
action analysis successfully identified the relationship bet-
ween interactions from GMDR analysis and actual biological 
relevance. In addition, our strategy interpreted GxG inter-
actions very effectively in finding known biological evidence 
using multiple public databases, especially in finding evi-
dence that is actually related with the phenotype.
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