• Title/Summary/Keyword: genome organization

Search Result 1,215, Processing Time 0.026 seconds

Ebola Hemorrhagic Fever Outbreaks: Diagnosis for Effective Epidemic Disease Management and Control (에볼라 출혈열 발병 : 효과적인 전염병 관리 및 통제를 위한 진단)

  • Kang, Boram;Kim, Hyojin;Macoy, Donah Mary;Kim, Min Gab
    • Microbiology and Biotechnology Letters
    • /
    • v.45 no.2
    • /
    • pp.87-92
    • /
    • 2017
  • The first Ebola hemorrhagic fever outbreak occurred in the Democratic Republic of Congo and Sudan in 1976 and then emerged in West Africa in 2014 with a total of 27,741 cases and 11,284 deaths. The fever is caused by the Ebola virus, which belongs to the Filoviridae family and contains a ssRNA genome. The known subtypes of the virus are Bundibugyo ebolavirus, Reston ebolavirus, Sudan ebolavirus, $Ta\ddot{i}$ Forest ebolavirus, and Zaire ebolavirus. The Ebola outbreak was historically originated majorly from the East and Central African tropical belt. The current outbreaks in West Africa caused numerous deaths and spread fear in global society. In the absence of effective treatment strategies and any vaccine, accurate diagnosis is the most important contributing factor in the management and control of the epidemic disease. WHO (World Health Organization) has announced emergency guidance for the selection and use of Ebola in in vitro diagnostic assays. Numerous companies and research institutions have studied the various diagnosis methods and identified four WHO procurement approved as diagnosis kits: RealStar Ebolavirus Screen RT-PCR kit 1.0 (Altona), Liferiver-Ebola Virus (EBOV) Real time RT-PCR kit, Xpert Ebola Assay, and ReEBOV Antigen Rapid Test Kit. The efficiency of novel diagnostic kits such as Rapid Diagnosis Test (RDT) is currently being evaluated.

Chromothripsis in Treatment Resistance in Multiple Myeloma

  • Lee, Kyoung Joo;Lee, Ki Hong;Yoon, Kyong-Ah;Sohn, Ji Yeon;Lee, Eunyoung;Lee, Hyewon;Eom, Hyeon-Seok;Kong, Sun-Young
    • Genomics & Informatics
    • /
    • v.15 no.3
    • /
    • pp.87-97
    • /
    • 2017
  • Multiple myeloma (MM) is a malignant disease caused by an abnormal proliferation of plasma cells, of which the prognostic factors include chromosomal abnormality, ${\beta}$-2 microglobulin, and albumin. Recently, the term chromothripsis has emerged, which is the massive but highly localized chromosomal rearrangement in response to a one-step catastrophic event. Many studies have shown an association of chromothripsis with the prognosis in several cancers; however, few studies have investigated it in MM. Here, we studied the association between chromothripsis-like patterns and treatment resistance or prognosis. First, we analyzed nine MM cell lines (U266, MM.1S, RPMI8226, KMS-11, KMS-12-BM, KMS-12-PE, KMS-28-BM, KMS-28-PE, and NCI-H929) and bone marrow samples of four patients who were diagnosed with MM by next-generation sequencing-based copy number variation analysis. The frequency of the chromothripsis-like pattern was observed in seven cell lines. We analyzed the treatment-induced chromothripsis-like patterns in KMS-12-BM and KMS-12-PE cells. As a result, breakpoints and chromothripsis-like patterns were increased after drug treatment in the relatively resistant KMS-12-BM. We further analyzed the patients' results according to the therapeutic response, which was divided into sensitive and resistant, as suggested by the International Myeloma Working Group. The chromothripsis-like pattern was more frequently observed in the resistant group. In the sensitive group, the frequency of the chromothripsis-like pattern decreased after treatment, whereas the resistant group showed increased chromothripsis-like patterns after the treatment. These results suggest that the chromothripsis-like pattern is associated with treatment response in MM.

Mutation Analysis of Synthetic DNA Barcodes in a Fission Yeast Gene Deletion Library by Sanger Sequencing

  • Lee, Minho;Choi, Shin-Jung;Han, Sangjo;Nam, Miyoung;Kim, Dongsup;Kim, Dong-Uk;Hoe, Kwang-Lae
    • Genomics & Informatics
    • /
    • v.16 no.2
    • /
    • pp.22-29
    • /
    • 2018
  • Incorporation of unique barcodes into fission yeast gene deletion collections has enabled the identification of gene functions by growth fitness analysis. For fine tuning, it is important to examine barcode sequences, because mutations arise during strain construction. Out of 8,708 barcodes (4,354 strains) covering 88.5% of all 4,919 open reading frames, 7,734 barcodes (88.8%) were validated as high-fidelity to be inserted at the correct positions by Sanger sequencing. Sequence examination of the 7,734 high-fidelity barcodes revealed that 1,039 barcodes (13.4%) deviated from the original design. In total, 1,284 mutations (mutation rate of 16.6%) exist within the 1,039 mutated barcodes, which is comparable to budding yeast (18%). When the type of mutation was considered, substitutions accounted for 845 mutations (10.9%), deletions accounted for 319 mutations (4.1%), and insertions accounted for 121 mutations (1.6%). Peculiarly, the frequency of substitutions (67.6%) was unexpectedly higher than in budding yeast (~28%) and well above the predicted error of Sanger sequencing (~2%), which might have arisen during the solid-phase oligonucleotide synthesis and PCR amplification of the barcodes during strain construction. When the mutation rate was analyzed by position within 20-mer barcodes using the 1,284 mutations from the 7,734 sequenced barcodes, there was no significant difference between up-tags and down-tags at a given position. The mutation frequency at a given position was similar at most positions, ranging from 0.4% (32/7,734) to 1.1% (82/7,734), except at position 1, which was highest (3.1%), as in budding yeast. Together, well-defined barcode sequences, combined with the next-generation sequencing platform, promise to make the fission yeast gene deletion library a powerful tool for understanding gene function.

Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands (고구마 생명공학연구 현황과 조건 불리지역 분자육종 전망)

  • Kim, Ho Soo;Yoon, Ung-Han;Lee, Chan-Ju;Kim, So-Eun;Ji, Chang Yoon;Kwak, Sang-Soo
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.196-206
    • /
    • 2018
  • Dramatic increase in global population accompanied by rapid industrialization in developing countries has led to serious environmental, food, energy, and health problems. The Food and Agriculture Organization of the United Nations has estimated world population will increase to 9.7 billion by 2050 and require approximately 1.7 times more food, and more than 3.5 times energy than that of today. Particularly, sweetpotato is easy to cultivate in unfavorable conditions such as heat, drought, high salt, and marginal lands. In this respect, sweetpotato is an industrially valuable starch crop. To replace crops associated with these food and energy problems, it is necessary to develop new crops with improved nutrients and productivity, that can be grown on marginal lands, including desertification areas using plant biotechnology. For this purpose, exploring useful genes and developing genetically modified crops are essential strategies. Currently, sweetpotato [Ipomoea batatas (L.) Lam.] have been re-evaluated as the best health food and industrial crop that produces starch and low molecular weight antioxidants, such as vitamin A, vitamin E, anthocyanins and carotenoids. This review will focus on the current status of research on sweetpotato biotechnology on omics including genome sequencing, transcriptome, proteomics and molecular breeding. In addition, prospects on molecular breeding of sweetpotato on marginal lands for sustainable development were described.

Diagnosis and Sequence Analysis of Japanese yam mosaic virus from Yam (Dioscorea opposita) (마(Dioscorea opposita)에 발생한 Japanese yam mosaic virus 진단 및 염기서열 분석)

  • Lee, Joong-Hwan;Son, Chang-Gi;Kwon, Joong-Bae;Nam, Hyo-Hun;Kim, Yeong-Tae;Kim, Mi Kyeong;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.22 no.4
    • /
    • pp.289-292
    • /
    • 2016
  • We surveyed the occurrence of Japanese yam mosaic virus (JYMV) on Yam in Gyeongsangbukdo pronvince from 2013 to 2015. The symptoms of JYMV were yellow stripes and chlorosis in yam leaves and the infection rate was ranged from 33.6% to 40.8%. We determined nucleotide sequence encoding the polyprotein of JYMV isolate BRI from yam leaves using next-generation sequencing (NGS) method. The partial nucleotide portion (7,736 nucleotides) of the genomic RNA of the JYMV isolate BRI has been sequenced (accession No. KU309315). The region sequenced includes a single open reading frame (ORF) encoding a polyprotein composed of 2,497 amino acids containing the coat protein (CP) and 3' untranslated region (UTR). The genomic organization of this isolate shows almost the same to that of other members of JYMV. The JYMV isolate BRI showed 77% to 79% nucleotide identity with the Japanese and Chinese strains and isolates. This is the first report of the genome nucleotide sequence of JYMV from Dioscorea opposita in Korea.

Evaluation of Digital PCR as a Technique for Monitoring Acute Rejection in Kidney Transplantation

  • Lee, Hyeseon;Park, Young-Mi;We, Yu-Mee;Han, Duck Jong;Seo, Jung-Woo;Moon, Haena;Lee, Yu-Ho;Kim, Yang-Gyun;Moon, Ju-Young;Lee, Sang-Ho;Lee, Jong-Keuk
    • Genomics & Informatics
    • /
    • v.15 no.1
    • /
    • pp.2-10
    • /
    • 2017
  • Early detection and proper management of kidney rejection are crucial for the long-term health of a transplant recipient. Recipients are normally monitored by serum creatinine measurement and sometimes with graft biopsies. Donor-derived cell-free deoxyribonucleic acid (cfDNA) in the recipient's plasma and/or urine may be a better indicator of acute rejection. We evaluated digital PCR (dPCR) as a system for monitoring graft status using single nucleotide polymorphism (SNP)-based detection of donor DNA in plasma or urine. We compared the detection abilities of the QX200, RainDrop, and QuantStudio 3D dPCR systems. The QX200 was the most accurate and sensitive. Plasma and/or urine samples were isolated from 34 kidney recipients at multiple time points after transplantation, and analyzed by dPCR using the QX200. We found that donor DNA was almost undetectable in plasma DNA samples, whereas a high percentage of donor DNA was measured in urine DNA samples, indicating that urine is a good source of cfDNA for patient monitoring. We found that at least 24% of the highly polymorphic SNPs used to identify individuals could also identify donor cfDNA in transplant patient samples. Our results further showed that autosomal, sex-specific, and mitochondrial SNPs were suitable markers for identifying donor cfDNA. Finally, we found that donor-derived cfDNA measurement by dPCR was not sufficient to predict a patient's clinical condition. Our results indicate that donor-derived cfDNA is not an accurate predictor of kidney status in kidney transplant patients.

Prediction of Colorectal Cancer Risk Using a Genetic Risk Score: The Korean Cancer Prevention Study-II (KCPS-II)

  • Jo, Jae-Seong;Nam, Chung-Mo;Sull, Jae-Woong;Yun, Ji-Eun;Kim, Sang-Yeun;Lee, Sun-Ju;Kim, Yoon-Nam;Park, Eun-Jung;Kimm, Hee-Jin;Jee, Sun-Ha
    • Genomics & Informatics
    • /
    • v.10 no.3
    • /
    • pp.175-183
    • /
    • 2012
  • Colorectal cancer (CRC) is among the leading causes of cancer deaths and can be caused by environmental factors as well as genetic factors. Therefore, we developed a prediction model of CRC using genetic risk scores (GRS) and evaluated the effects of conventional risk factors, including family history of CRC, in combination with GRS on the risk of CRC in Koreans. This study included 187 cases (men, 133; women, 54) and 976 controls (men, 554; women, 422). GRS were calculated with most significantly associated single-nucleotide polymorphism with CRC through a genomewide association study. The area under the curve (AUC) increased by 0.5% to 5.2% when either counted or weighted GRS was added to a prediction model consisting of age alone (AUC 0.687 for men, 0.598 for women) or age and family history of CRC (AUC 0.692 for men, 0.603 for women) for both men and women. Furthermore, the risk of CRC significantly increased for individuals with a family history of CRC in the highest quartile of GRS when compared to subjects without a family history of CRC in the lowest quartile of GRS (counted GRS odds ratio [OR], 47.9; 95% confidence interval [CI], 4.9 to 471.8 for men; OR, 22.3; 95% CI, 1.4 to 344.2 for women) (weighted GRS OR, 35.9; 95% CI, 5.9 to 218.2 for men; OR, 18.1, 95% CI, 3.7 to 88.1 for women). Our findings suggest that in Koreans, especially in Korean men, GRS improve the prediction of CRC when considered in conjunction with age and family history of CRC.

Utility of Integrated Analysis of Pharmacogenomics and Pharmacometabolomics in Early Phase Clinical Trial: A Case Study of a New Molecular Entity

  • Oh, Jaeseong;Yi, Sojeong;Gu, Namyi;Shin, Dongseong;Yu, Kyung-Sang;Yoon, Seo Hyun;Cho, Joo-Youn;Jang, In-Jin
    • Genomics & Informatics
    • /
    • v.16 no.3
    • /
    • pp.52-58
    • /
    • 2018
  • In this report, we present a case study of how pharmacogenomics and pharmacometabolomics can be useful to characterize safety and pharmacokinetic profiles in early phase new drug development clinical trials. During conducting a first-in-human trial for a new molecular entity, we were able to determine the mechanism of dichotomized variability in plasma drug concentrations, which appeared closely related to adverse drug reactions (ADRs) through integrated omics analysis. The pharmacogenomics screening was performed from whole blood samples using the Affymetrix DMET (Drug-Metabolizing Enzymes and Transporters) Plus microarray, and confirmation of genetic variants was performed using real-time polymerase chain reaction. Metabolomics profiling was performed from plasma samples using liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. A GSTM1 null polymorphism was identified in pharmacogenomics test and the drug concentrations was higher in GSTM1 null subjects than GSTM1 functional subjects. The apparent drug clearance was 13-fold lower in GSTM1 null subjects than GSTM1 functional subjects (p < 0.001). By metabolomics analysis, we identified that the study drug was metabolized by cysteinylglycine conjugation in GSTM functional subjects but those not in GSTM1 null subjects. The incidence rate and the severity of ADRs were higher in the GSTM1 null subjects than the GSTM1 functional subjects. Through the integrated omics analysis, we could understand the mechanism of inter-individual variability in drug exposure and in adverse response. In conclusion, integrated multi-omics analysis can be useful for elucidating the various characteristics of new drug candidates in early phase clinical trials.

A Cotwin Control Study of Smoking and Risk Factors of Metabolic Syndrome

  • Sung, Jooh-On;Cho, Sung-Il;Choi, Ji-Sook;Song, Yun-Mi;Lee, Ka-Young;Choi, Eun-Young;Ha, Mi-Na;Kim, Yeon-Ju;Shin, Eun-Kyung
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.166-171
    • /
    • 2005
  • Background: Smoking effects are relatively well-documented, especially on cancers and cardiovascular diseases. However, the direction and magnitude of association between smoking and obesity remain unclear. Conflicting results so far are thought to stem from the multiple confounding structure of smoking and other obesogenic life style characteristics. Methods: Cotwin control study is a genomic epidemiology design, in which the other twin (=cotwin) serves as a control of the twin. Cotwin control study, discordant for smoking habits can provide powerful evidence of association between smoking and obesity by completely matching genomic information, intrauterine environment, and almost all environmental factors. We selected 3,697 like-sex twin pairs (2,762 male and 935 female pairs) out of 63,666 pairs of adult twins in the existing Korea Twin and Family Register, whose smoking habits are discordant. We used the information of obesity as body mass index (BMI, $kg/m^2$) blood pressure, and blood cholesterol level at the time or later than the smoking information. Paired t-test was done to compare the smoking effects. Results: Lifetime smoking rate was 80.1 % (47.9 current smoker) for men and 10% (1.7% current smoker) for women. Among 2,762 and 935 male and female like-sex twin pairs, 363 male pairs and 20 female pairs correspond to the definition of smoker-nonsmoker pair. The male smokers demonstrated increase in BMI by 0.47, while female smokers show slight decrease (by 0.13), which were not statistically significant. Diastolic and systolic blood pressure, and cholesterol level were slightly increased among smokers by 1.85 mmHg, 0.62 mmHg, and 1.28 mg/dl for men. For women, the results show increase in diastolic blood pressure (3.42mmHg) and cholesterol level (1.25 mg/dl), and systolic pressure (8.17 mmHg). Conclusion: The results refute the possibility that smoking can reduce BMI. Considering the direct adverse effect of smoking, it should be emphasized that smoking do not decrease obesity and thus increase overall metabolic syndrome.

Identification and Functional Characterization of P159L Mutation in HNF1B in a Family with Maturity-Onset Diabetes of the Young 5 (MODY5)

  • Kim, Eun Ky;Lee, Ji Seon;Cheong, Hae Il;Chung, Sung Soo;Kwak, Soo Heon;Park, Kyong Soo
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.240-246
    • /
    • 2014
  • Mutation in HNF1B, the hepatocyte nuclear factor-$1{\beta}$ (HNF-$1{\beta}$) gene, results in maturity-onset diabetes of the young (MODY) 5, which is characterized by gradual impairment of insulin secretion. However, the functional role of HNF-$1{\beta}$ in insulin secretion and glucose metabolism is not fully understood. We identified a family with early-onset diabetes that fulfilled the criteria of MODY. Sanger sequencing revealed that a heterozygous P159L (CCT to CTT in codon 159 in the DNA-binding domain) mutation in HNF1B was segregated according to the affected status. To investigate the functional consequences of this HNF1B mutation, we generated a P159L HNF1B construct. The wild-type and mutant HNF1B constructs were transfected into COS-7 cells in the presence of the promoter sequence of human glucose transporter type 2 (GLUT2). The luciferase reporter assay revealed that P159L HNF1B had decreased transcriptional activity compared to wild-type (p < 0.05). Electrophoretic mobility shift assay showed reduced DNA binding activity of P159L HNF1B. In the MIN6 pancreatic ${\beta}$-cell line, overexpression of the P159L mutant was significantly associated with decreased mRNA levels of GLUT2 compared to wild-type (p < 0.05). However, INS expression was not different between the wild-type and mutant HNF1B constructs. These findings suggests that the impaired insulin secretion in this family with the P159L HNF1B mutation may be related to altered GLUT2 expression in ${\beta}$-cells rather than decreased insulin gene expression. In conclusion, we have identified a Korean family with an HNF1B mutation and characterized its effect on the pathogenesis of diabetes.