DOI QR코드

DOI QR Code

Status of research on the sweetpotato biotechnology and prospects of the molecular breeding on marginal lands

고구마 생명공학연구 현황과 조건 불리지역 분자육종 전망

  • Kim, Ho Soo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Yoon, Ung-Han (Genomics Division, National Academy of Agricultural Science) ;
  • Lee, Chan-Ju (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Kim, So-Eun (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Ji, Chang Yoon (Research & Development Center, Korea Scientific Technique Industry Co., Ltd.) ;
  • Kwak, Sang-Soo (Plant Systems Engineering Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 김호수 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 윤웅한 (국립농업과학원 유전체과) ;
  • 이찬주 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 김소은 (한국생명공학연구원 식물시스템공학연구센터) ;
  • 지창윤 ((주)한국과기산업 기업부설연구소) ;
  • 곽상수 (한국생명공학연구원 식물시스템공학연구센터)
  • Received : 2018.09.17
  • Accepted : 2018.09.20
  • Published : 2018.09.30

Abstract

Dramatic increase in global population accompanied by rapid industrialization in developing countries has led to serious environmental, food, energy, and health problems. The Food and Agriculture Organization of the United Nations has estimated world population will increase to 9.7 billion by 2050 and require approximately 1.7 times more food, and more than 3.5 times energy than that of today. Particularly, sweetpotato is easy to cultivate in unfavorable conditions such as heat, drought, high salt, and marginal lands. In this respect, sweetpotato is an industrially valuable starch crop. To replace crops associated with these food and energy problems, it is necessary to develop new crops with improved nutrients and productivity, that can be grown on marginal lands, including desertification areas using plant biotechnology. For this purpose, exploring useful genes and developing genetically modified crops are essential strategies. Currently, sweetpotato [Ipomoea batatas (L.) Lam.] have been re-evaluated as the best health food and industrial crop that produces starch and low molecular weight antioxidants, such as vitamin A, vitamin E, anthocyanins and carotenoids. This review will focus on the current status of research on sweetpotato biotechnology on omics including genome sequencing, transcriptome, proteomics and molecular breeding. In addition, prospects on molecular breeding of sweetpotato on marginal lands for sustainable development were described.

고구마는 식량뿐만 아니라 전분을 비롯하여 카로티노이드, 비타민C, 비타민E, 안토시아닌과 같은 저분자 항산화물질을 생산하는 중요한 산업용 뿌리작물로 건조 등 조건 불리지역에 적용이 가능한 최고의 전분작물로 각광받고 있다. 이러한 관점에서 중국, 일본을 비롯한 세계 각국에서 오믹스 기반 유용유전자 발굴 및 활용에 대한 연구가 활발히 진행되고 있다. 또한 2014년부터 한 중 일 고구마연구협의회(TRAS)를 중심으로 Xushu 18(6배체) 고구마 유전체 해독 연구가 진행되고 있으며 거의 완성단계에 이르고 있다. 향후 고구마 유전체 해독이 완성되면 오믹스 기반 연구결과와 더불어 전분대사, 항산화물질 대사, 환경스트레스, 기능성 등의 기작에 관여하는 유용유전자 분리 및 활용 연구의 활성화에 기여할 것이며 6배체 고구마 유전체 해독 연구는 식물 유전체 해독에 있어 가장 문제시되는 다배수체 식물의 유전체 해독 문제해결에 가장 큰 기여를 할 것으로 기대 된다. 본 논문은 현재까지 연구된 고구마 생명공학 연구 현황과 조건 불리지역 분자육종 전망에 대해 기술하였다. 이러한 연구 동향 분석은 고구마를 활용한 글로벌 식량, 에너지, 환경문제 해결을 위한 실용화 연구에 도움이 될 것으로 생각된다.

Keywords

References

  1. Blackstock WP, Weir MP (1999) Proteomics: quantitative and physical mapping of cellular proteins. Trends Biotechnol 17:121-127 https://doi.org/10.1016/S0167-7799(98)01245-1
  2. Cargill (2014) Food security: The challenge, 1-3
  3. Diretto G, Al-Babili S, Tavazza R, Papacchioli V, Beyer P, Giuliano G (2007a) Metabolic engineering of potato carotenoid content through tuber-specific overexpression of a bacterial mini-pathway. PLoS One 2:e350 https://doi.org/10.1371/journal.pone.0000350
  4. Diretto G, Welsch R, Tavazza R, Mourgues F, Pizzichini D, Beyer P, Giuliano G (2007b). Silencing of ${\beta}$-carotene hydroxylase increases total carotenoid and ${\beta}$-carotene levels in potato tubers. BMC Plant Biology 7:11 https://doi.org/10.1186/1471-2229-7-11
  5. Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7:e37344 https://doi.org/10.1371/journal.pone.0037344
  6. Firon N, LaBonte D, Villordon A, Kfir Y, Solis J, Lapis E, Perlman TS, Doron-Faigenboim A, Hetzroni A, Althan L, Nadir LA (2013) Transcriptional profiling of sweetpotato (Ipomoea batatas) roots indicates down-regulation of lignin biosynthesis and up-regulation of starch biosynthesis at an early stage of storage root formation. BMC Genomics 14:460 https://doi.org/10.1186/1471-2164-14-460
  7. Food and Agriculture Organization of the United Nations (FAO) (2015) The state of food insecurity in the world, 8-18
  8. Gao S, Yuan L, Zhai H, Liu C, He S, Liu Q (2011) Transgenic sweetpotato plants expressing an LOS5 gene are tolerant to salt stress. Plant Cell, Tissue Organ Cult 107:205-213 https://doi.org/10.1007/s11240-011-9971-1
  9. Gu Y, Tao X, Lai X, Wang H, Zhang Y (2014) Exploring the polyadenylated RNA virome of sweet potato through highthroughput sequencing. PLoS One 9: e98884 https://doi.org/10.1371/journal.pone.0098884
  10. Ha J, Won JC, Jung YH, Yang JW, Lee HU, Nam KJ, Park SC, Jeong JC, Lee SW, Lee DW, Chung JS, Lee JJ, Kim YH (2017) Comparative proteomic analysis of the response of fibrous roots of nematode-resistant and -sensitive sweet potato cultivars to root-knot nematode Meloidogyne incognita. Acta Physiol Plant 39:262 https://doi.org/10.1007/s11738-017-2560-0
  11. Hattori T, Fukumoto H, Nakagawa S, Nakamura K (1991) Sucrose-induced expression of genes coding for the tuberous root storage protein, sporamin, of sweet potato in leaves and petioles. Plant Cell Physiol 32:79-86
  12. Hirakawa H, Okada Y, Tabuchi H, Shirasawa K, Watanabe A, Tsuruoka H, Minami C, Nakayama S, Sasamoto S, Kohara M, Kishida Y, Fujishiro T, Kato M, Nanri K, Komaki A, Yoshinaga M, Takahata Y, Tanaka M, Tabata S, Isobe SN (2015) Survey of genome sequences in a wild sweetpotato, Ipomoea trifida (H.B.K.) G. Don. DNA Res 22:171-179 https://doi.org/10.1093/dnares/dsv002
  13. Hoshino A, Jayakumar V, Nitasaka E, Toyoda A, Noguchi H, Itoh T, Shin-I T, Minakuchi Y, Koda Y, Nagano AJ, Yasugi M, Honjo MN, Kudoh H, Seki M, Kamiya A, Shiraki T, Carninci P, Asamizu E, Nishide H, Tanaka S, Park KI, Morita Y, Yokoyama K, Uchiyama I, Tanaka Y, Tabata S, Shinozaki K, Hayashizaki Y, Kohara Y, Suzuki Y, Sugano S, Fujiyama A, Iida S, Sakakibara Y. (2016) Genome sequence and analysis of the Japanese morning glory Ipomoea nil. Nat Commun. 7:13295 https://doi.org/10.1038/ncomms13295
  14. Ji CY, Jin R, Xu Z, Kim HS, Lee CJ, Kang L, Kim SE, Lee HU, Lee JS, Kang CH, Chi YH, Lee SY, Xie Y, Li H, Ma D, Kwak SS (2017) Overexpression of Arabidopsis P3B increases heat and low temperature stress tolerance in transgenic sweetpotato. BMC Plant Biol 14:139
  15. Ji CY, Kwak SS (2018) Molecular and physiological studies on tuberous roots of sweetpotato under low temperature storage. Ph.D Thesis, University of Science and Technology (UST). February 2018. pp. 124
  16. Jin R, Kim BH, Ji CY, Kim HS, Li HM, Ma DF, Kwak SS (2017) Overexpressing IbCBF3 increases low temperature and drought stress tolerance in transgenic sweetpotato. Plant Physiol Biochem 118:45-54 https://doi.org/10.1016/j.plaphy.2017.06.002
  17. Jung C, Capistrano-Gossmann G, Braatz J, Sashidhar N, Melzer S (2017) Recent developments in genome editing and applications in plant breeding. Plant Breeding 137:1-9
  18. Kang C, Zhai H, Xue L, Zhao N, He S, Liu Q (2018) A lycopene ${\beta}$-cyclase gene, IbLCYB2, enhances carotenoid contents and abiotic stress tolerance in transgenic sweetpotato. Plant Sci 272:243-254 https://doi.org/10.1016/j.plantsci.2018.05.005
  19. Kang L, Ji CY, Kim SH, Ke Q, Park SC, Kim HS, Lee HU, Lee JS, Park WS, Ahn MJ, Lee HS, Deng X, Kwak SS (2017a) Suppression of the ${\beta}$-carotene hydroxylase gene increases ${\beta}$-carotene content and tolerance to abiotic stress in transgenic sweetpotato plants. Plant Physiol Biochem 117:24-33 https://doi.org/10.1016/j.plaphy.2017.05.017
  20. Kang L, Kim HS, Kwon YS, Ke Q, Ji CY, Park SC, Lee HS, Deng X, Kwak SS (2017b) IbOr regulates photosynthesis under heat stress by stabilizing IbPsbP in sweetpotato. Front Plant Sci 8:989 https://doi.org/10.3389/fpls.2017.00989
  21. Kasukabe Y, He L,Watakabe Y, Otani M, Shimada T, Tachibana T (2006) Improvement of environmental stress tolerance of sweet potato by introduction of genes for spermidine synthase. Plant Biotechnol 23:75-83 https://doi.org/10.5511/plantbiotechnology.23.75
  22. Kim KY, Kwon SY, Lee HS, Hur Y, Bang JW, Kwak SS (2003) A novel oxidative stress-inducible peroxidase promoter from sweetpotato: molecular cloning and characterization in transgenic tobacco plants and cultured cells. Plant Mol Biol 51:831-838 https://doi.org/10.1023/A:1023045218815
  23. Kim KY, Lim S, Yang KS, Kim CY, Kwon SY, Lee HS, Wang X, Zhou Z, Ma D, Yun DJ, Kwak SS (2009) Expression of Arabidopsis NDPK2 increase antioxidant enzyme activities and enhanced tolerance multiple environmental stresses in transgenic sweetpotato plants. Mol Breeding 24:233-244 https://doi.org/10.1007/s11032-009-9286-7
  24. Kim HS, Ji CY, Lee CJ, Kim SE, Park SC, Kwak SS (2018) Orange: a target gene for regulating carotenoid homeostasis and increasing plant tolerance to environmental stress in marginal lands. J EXP BOT 69:3393-3400 https://doi.org/10.1093/jxb/ery023
  25. Kim SH, Ahn YO, Ahn MJ, Lee HS, Kwak SS (2012) Downregulation of ${\beta}$-carotene hydroxylase increases ${\beta}$-carotene and total carotenoids enhancing salt stress tolerance in transgenic cultured cells of sweetpotato. Phytochemistry 74:69-78 https://doi.org/10.1016/j.phytochem.2011.11.003
  26. Kim SH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013a) Cloning and characterization of an Orange gene that increases carotenoid accumulation and salt stress tolerance in transgenic sweetpotato cultures. Plant Physiol Biochem 70:445-454 https://doi.org/10.1016/j.plaphy.2013.06.011
  27. Kim SH, Kim YH, Ahn YO, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2013b) Down regulation of the lycopene ${\varepsilon}$-cyclase gene increases carotenoid synthesis via the ${\beta}$-branch-specific pathway and enhances salt-stress tolerance in sweetpotato transgenic calli. Physiol Plant 147:432-442 https://doi.org/10.1111/j.1399-3054.2012.01688.x
  28. Kim SH, Jeong JC, Park S, Bae JY, Ahn MJ, Lee HS, Kwak SS (2014) Down-regulation of sweetpotato lycopene ${\beta}$-cyclase gene enhances tolerance to abiotic stress in transgenic calli. Mol Biol Rep 41:8137-8148 https://doi.org/10.1007/s11033-014-3714-4
  29. Kim YH, Kim MD, Park SC, Yang KS, Jeong JC, Lee HS, Kwak SS (2011) SCOF1-expressing transgenic sweetpotato plants show enhanced tolerance to low-temperature stress. Plant Physiol Biochem 49:1436-1441 https://doi.org/10.1016/j.plaphy.2011.09.002
  30. Kreuze JF, Klein IS, Lazaro MU, Chuquiyuri WJ, Morgan GL, Mejia PG, Ghislain M, Valkonen JP (2008) RNA silencingmediated resistance to a crinivirus (Closteroviridae) in cultivated sweet potato (Ipomoea batatas L.) and development of sweet potato virus disease following co-infection with a potyvirus. Mol Plant Pathol 9:589-598 https://doi.org/10.1111/j.1364-3703.2008.00480.x
  31. Kwak SS (2011) Development of industrial transgenic crops with enhanced tolerance to environmental stresses to combat desertification. Biosafety 12:4-9
  32. Lalusin AG, Nishita K, Kim SH, Ohta M, Fujimura T (2006) A new MADS-box gene (IbMADS10) from sweet potato (Ipomoea batatas (L.) Lam) is involved in the accumulation of anthocyanin. Mol Genet Genomics 275:44-54 https://doi.org/10.1007/s00438-005-0080-x
  33. Lee JJ, Park KW, Kwak YS, Ahn JY, Jung YH, Lee BH, Jeong JC, Lee HS, Kwak SS (2012) Comparative proteomic study between tuberous roots of light orange- and purple-fleshed sweetpotato cultivars. Plant Science 193-194:120-129 https://doi.org/10.1016/j.plantsci.2012.06.003
  34. Lee JJ, Kim YH, Kwak YS, An JY, Kim PJ, Lee BH, Kumar V, Park KW, Chang ES, Jeong JC, Lee HS, Kwak SS (2015) A comparative study of proteomic differences between pencil and storage roots of sweetpotato (Ipomoea batatas (L.) Lam.). Plant Physiol Biochem 87:92-101 https://doi.org/10.1016/j.plaphy.2014.12.010
  35. Li JF, Norville JE, Aach J, McCormack M, Zhang D, Bush J, Church GM, Sheen J (2013) Multiplex and homologous recombination-mediated genome editing in Arabidopsis and Nicotiana benthamiana using guide RNA and Cas9. Nat Biotechnol 31:688-691 https://doi.org/10.1038/nbt.2654
  36. Li R, Zhai H, Kang C, Liu D, He S, Liu Q (2015) De novo transcriptome sequencing of the orange-fleshed sweet potato and analysis of differentially expressed genes related to carotenoid biosynthesis. Int J Genomics 843802:1-10
  37. Li R, Kang C, Song X, Yu L, Liu D, He S, Zhai H, Liu Q (2017) A $\zeta$-carotene desaturase gene, IbZDS, increases ${\beta}$-carotene and lutein contents and enhances salt tolerance in transgenic sweetpotato. Plant Sci 262:39-51 https://doi.org/10.1016/j.plantsci.2017.05.014
  38. Li Y, Wang Y, Zhang H, Zhang Q, Zhai H, Liu Q, He S (2017) The plasma membrane-localized sucrose transporter IbSWEET10 Contributes to the resistance of sweet potato to Fusarium oxysporum. Front Plant Sci 8:197
  39. Lim S, Kim YH, Kim SH, Kwon SY, Lee HS, Kim JS, Cho KY, Paek KY, Kwak SS (2007) Enhanced tolerance of transgenic sweetpotato plants that express both CuZnSOD and APX in chloroplasts to methyl viologen-mediated oxidative stress and chilling. Mol Breeding 19:227-239 https://doi.org/10.1007/s11032-006-9051-0
  40. Lin Y, Zou W, Lin S, Onofua D, Yang Z, Chen H, Wang S, Chen X (2017) Transcriptome profiling and digital gene expression analysis of sweet potato for the identification of putative genes involved in the defense response against Fusarium oxysporum f. sp. batatas. PLoS One 12:e0187838. https://doi.org/10.1371/journal.pone.0187838
  41. Lindgren LO, Stalberg KG, Hoglund AS (2003) Seed-specific overexpression of an endogenous Arabidopsis phytoene synthase gene results in delayed germination and increased levels of carotenoids, chlorophyll, and abscisic acid. Plant Physiol 132:779-785 https://doi.org/10.1104/pp.102.017053
  42. Liu D, He S, Zhai H, Wang L, Zhao Y, Wang B, Li R, Liu Q (2014a) Overexpression of IbP5CR enhances salt tolerance in transgenic sweetpotato. Plant Cell Tissue Organ Cult 117:1-18 https://doi.org/10.1007/s11240-013-0415-y
  43. Liu D, Wang L, Liu C, Song X, He S, Zhai H, Liu Q (2014b) An Ipomoea batatas iron-sulfur cluster scaffold protein gene, IbNFU1, is involved in salt tolerance. PLoS One 9:e93935 https://doi.org/10.1371/journal.pone.0093935
  44. Liu D, Wang L, Zhai H, Song X, He S, Liu Q (2014c) A novel ${\alpha}/{\beta}$ -hydrolase gene IbMas enhances salt tolerance in transgenic sweetpotato. PLoS One 9:e115128 https://doi.org/10.1371/journal.pone.0115128
  45. Liu D, He S, Song X, Zhai H, Liu N, Zhang D, Ren Z, Liu Q (2015) IbSIMT1, a novel salt-induced methyltransferase gene from Ipomoea batatas, is involved in salt tolerance. Plant Cell, Tissue Organ Cult 120:701-715 https://doi.org/10.1007/s11240-014-0638-6
  46. Lu S, Van Eck J, Zhou X, Lopez AB, O'Halloran DM., Cosman KM., Conlin BJ., Paolillo DJ, Garvin DF, Vrebalov J, Kochian LV, Kupper H, Earle ED, Cao J, Li L (2006) The cauliflower Or gene encodes a DnaJ cysteine-rich domaincontaining protein that mediates high levels of ${\beta}$-carotene accumulation. Plant Cell 18:3594-3605 https://doi.org/10.1105/tpc.106.046417
  47. Ma P, Bian X, Jia Z, Guo X, Xie Y (2016) De novo sequencing and comprehensive analysis of the mutant transcriptome from purple sweet potato (Ipomoea batatas L.). Gene 575:641-649 https://doi.org/10.1016/j.gene.2015.09.056
  48. Mano H, Ogasawara F, Sato K, Higo H, Minobe Y (2007) Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweetpotato. Plant Physiol 143:1252-1268 https://doi.org/10.1104/pp.106.094425
  49. Mbinda W, Ombori O, Dixelius C, Oduor R (2018) Xerophyta viscosa Aldose Reductase, XvAld1, Enhances Drought Tolerance in Transgenic Sweetpotato. Mol Biotechnol 60:203-214 https://doi.org/10.1007/s12033-018-0063-x
  50. MorAn R, Garcia R, Lopez A, Zaldua Z, Mena J, Garcia M, Armas R, Somontea, J. Rodriguez D, Gomez M, Pimentela E (1998) Transgenic sweet potato plants carrying the delta-endotoxin gene from Bacillus thuringiensis var. tenebrionis. Plant Sci 139:175-184 https://doi.org/10.1016/S0168-9452(98)00179-4
  51. Morikawa T, Uraguchi, Y, Sanda S, Nakagawa S, Sawayama S (2017) Overexpression of DnaJ-Like Chaperone Enhances Carotenoid Synthesis in Chlamydomonas reinhardtii. Appl Biochem Biotechnol 180:80-91
  52. Nekrasov V, Staskawicz B, Weigel D, Jones JDG, Kamoun S (2013) Targeted mutagenesis in the model plant Nicotiana benthamiana using Cas9 RNA-guided endonuclease. Nat Biotechnol 31:691-693 https://doi.org/10.1038/nbt.2655
  53. Noh SA, Lee HS, Huh EJ, Huh GH, Paek KH, Shin JS, Bae JM (2010) SRD1 is involved in the auxin-mediated initial thickening growth of storage root by enhancing proliferation of metaxylem and cambium cells in sweetpotato (Ipomoea batatas). J Exp Bot 61:1337-1349 https://doi.org/10.1093/jxb/erp399
  54. Noh SA, Lee HS, Huh GH, Oh MJ, Paek KH, Shin JS, Bae JM (2012) A sweetpotato SRD1 promoter confers strong root-, taproot-, and tuber-specific expression in Arabidopsis, carrot, and potato. Transgenic Res 21:265-278 https://doi.org/10.1007/s11248-011-9528-4
  55. Noh SA, Lee HS, Kim YS, Paek KH, Shin JS, Bae JM (2013) Down-regulation of the IbEXP1 gene enhanced storage root development in sweetpotato. J Exp Bot 64:129-142 https://doi.org/10.1093/jxb/ers236
  56. Otani M, Hamada T, Katayama K, Kitahara K, Kim SH, Takahata Y, Suganuma T, Shimada T (2007) Inhibition of the gene expression for granule-bound starch synthase I by RNA interference in sweet potato plants. Plant Cell Rep 26:1801-1807 https://doi.org/10.1007/s00299-007-0396-6
  57. Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R (2005) Improving the nutritional value of Golden rice through increased provitamin A content. Nat Biotechnol 23:482-487 https://doi.org/10.1038/nbt1082
  58. Park S, Kim HS, Jung YJ, Kim SH, Ji CY, Wang Z, Jeong JC, Lee HS, Lee SY, Kwak SS (2016) Orange protein has a role in phytoene synthase stabilization in sweetpotato. Sci Rep 6:33563 https://doi.org/10.1038/srep33563
  59. Park SC, Kim YH, Jeong JC, Kim CY, Lee HS, Bang JW, Kwak SS (2011) Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic- and salt stress-tolerance of transgenic calli. Planta 233:621-634 https://doi.org/10.1007/s00425-010-1326-3
  60. Park SC, Kim YH, Kim SH, Jeong YJ, Kim CY, Lee JS, Bae JY, Ahn MJ, Jeong JC, Lee HS, Kwak SS (2015) Overexpression of the IbMYB1 gene in an orange-fleshed sweetpotato cultivar produces a dual-pigmented transgenic sweetpotato with improved antioxidant activity. Physiol Plant 153:525-537 https://doi.org/10.1111/ppl.12281
  61. Ponniah SK, Thimmapuram J, Bhide K, Kalavacharla V, Manoharan M (2017) Comparative analysis of the root transcriptomes of cultivated sweetpotato (Ipomoea batatas [L.] Lam) and its wild ancestor (Ipomoea trifida [Kunth] G. Don). BMC Plant Biol 17:9 https://doi.org/10.1186/s12870-016-0950-x
  62. Qin Z, Li A, Hou F, Wang Q, Dong S, Zhang L (2017) Gene identification using RNA-seq in two sweetpotato genotypes and the use of mining to analyze carotenoid biosynthesis. S AFR J BOT 109:189-195 https://doi.org/10.1016/j.sajb.2017.01.003
  63. Ren Z, He S, Zhao N, Zhai H, Liu Q (2018) A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, improves starch content, composition, granule size, degree of crystallinity and gelatinization in transgenic sweet potato. Plant Biotechnol J 1-12
  64. Sefasi A, Ssemakula G, Ghislain M, Prentice K, Kiggundu A, Mwanga R, Mukasa SB (2014) Transient expression of ${\beta}$-glucuronidase in recalcitrant ugandan sweetpotato and putative transformation with two cry genes. African Crop Sci J 22:215-227
  65. Shan Q, Wang Y, Li J, Zhang Y, Chen K, Liang Z, Zhang K, Liu J, Xi JJ, Gao C (2013) Targeted genome modification of crop plants using a CRISPR-Cas system. Nat Biotechnol 31:686-688 https://doi.org/10.1038/nbt.2650
  66. Shekhar S, Agrawal L, Mishra D, Buragohain AK, Unnikrishnan M, Mohan C, Chakraborty S, Chakraborty N (2016) Ectopic expression of amaranth seed storage albumin modulates photoassimilate transport and nutrient acquisition in sweetpotato. Sci Rep 6:25384 https://doi.org/10.1038/srep25384
  67. Shewmaker CK, Sheehy JA, Daley M, Colburn S, Ke DY (1999) Seed-specific overexpression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401-412 https://doi.org/10.1046/j.1365-313x.1999.00611.x
  68. Shimada T, Otani M, Hamada T, Kim SH (2006) Increase of amylose content of sweetpotato starch by RNA interference of the starch branching enzyme II gene (IbSBEII). Plant Biotechnol 23:85-90 https://doi.org/10.5511/plantbiotechnology.23.85
  69. Shirasawa K, Tanaka M, Takahata Y, Ma D, Cao Q, Liu Q, Zhai H, Kwak SS, Cheol Jeong J, Yoon UH, Lee HU, Hirakawa H, Isobe S. (2017) A high-density SNP genetic map consisting of a complete set of homologous groups in autohexaploid sweetpotato (Ipomoea batatas). Sci Rep. 7:44207 https://doi.org/10.1038/srep44207
  70. Sivparsad BJ, Gubba A (2014) Development of transgenic sweet potato with multiple virus resistance in South Africa (SA). Transgenic Res 23:377-388 https://doi.org/10.1007/s11248-013-9759-7
  71. Tanaka M, Takahata Y, Nakayama H, Nakatani M, Tahara M (2009) Altered carbohydrate metabolism in the storage roots of sweet potato plants overexpressing the SRF1 gene, which encodes a Dof zinc finger transcription factor. Planta 230:737-746 https://doi.org/10.1007/s00425-009-0979-2
  72. Tao X, Gu Y, Wang H, Zheng W, Li X, Zhao C, Zhang Y (2012) Digital gene expression analysis based on integrated de novo transcriptome assembly of sweet potato [Ipomoea batatas (L.) Lam.]. PLoS One 7:e36234 https://doi.org/10.1371/journal.pone.0036234
  73. Tao X, Gu Y, Jiang Y, Zhang Y, Wang H (2013) Transcriptome analysis to identify putative floral-specific genes and flowering regulatory-related genes of sweetpotato. Biosci Biotechnol Biochem 77:2169-2174 https://doi.org/10.1271/bbb.130218
  74. Wang B, Zhai H, He S, Zhang H, Ren Z, Zhang D, Liu QC (2016a) A vacuolar $Na^+/H^+$ antiporter gene, IbNHX2, enhances salt and drought tolerance in transgenic sweetpotato. Sci Hortic 201:153-166 https://doi.org/10.1016/j.scienta.2016.01.027
  75. Wang F, Tong W, Zhu H, Kong W, Peng R, Liu Q, Yao Q (2016b) A novel Cys2/His2 zinc finger protein gene from sweetpotato, IbZFP1, is involved in salt and drought tolerance in transgenic Arabidopsis. Planta 243:783-797 https://doi.org/10.1007/s00425-015-2443-9
  76. Wang H, Fan W, Li H, Yang J, Huang J, Zhang P (2013) Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses. PLoS One 8:e78484 https://doi.org/10.1371/journal.pone.0078484
  77. Wang S, Pana D, Lv X, Song X, Qiu Z, Huang C, Huang R, Chen W (2016c) Proteomic approach reveals that starch degradation contributes to anthocyanin accumulation in tuberous root of purple sweet potato
  78. Wang Z, Fang B, Chen J, Zhang X, Luo Z, Huang L, Chen X, Li Y (2010) De novo assembly and characterization of root transcriptome using Illumina paired-end sequencing and development of cSSR markers in sweetpotato (Ipomoea batatas). BMC Genomics 11:726 https://doi.org/10.1186/1471-2164-11-726
  79. Xie F, Burklew CE, Yang Y, Liu M, Xiao P, Zhang B, Qiu D (2012) De novo sequencing and a comprehensive analysis of purple sweet potato (Impomoea batatas L.) transcriptome. Planta 236:101-113 https://doi.org/10.1007/s00425-012-1591-4
  80. Xie Z, Zhou Z, Li Hongmin, Yu J, Jiang J, Tang Z, Ma D, Zhang B, Han Y, Li Z (2018) High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas Lam.) during storage. Genomics (in press)
  81. Yan H, Li Q, Park SC, Wang X, Liu YJ, Zhang YG, Tang W, Kou M, Ma DF (2016) Overexpression of CuZnSOD and APX enhance salt stress tolerance in sweet potato. Plant Physiol Biochem 109:20-27 https://doi.org/10.1016/j.plaphy.2016.09.003
  82. Yang J, Moeinzadeh MH, Kuhl H, Helmuth J, Xiao P, Haas S, Liu G, Zheng J, Sun Z, Fan W, Deng G, Wang H, Hu F, Zhao S, Fernie AR, Boerno S, Timmermann B, Zhang P, Vingron M. (2017) Haplotype-resolved sweet potato genome traces back its hexaploidization history. Nat Plants. 3:696-703 https://doi.org/10.1038/s41477-017-0002-z
  83. Yang S, Liu X, Qiao S, Tan W, Li M, Feng J, Zhang C, Kang X, Huang T, Zhu Y, Yang L, Wang D (2018) Starch content differences between two sweet potato accessions are associated with specific changes in gene expression. Funct Integr Genomic 1-13
  84. Ye X, Al-Babili S, Kloti A, Zhang J, Lucca P, Beyer P, Potrykus I (2000) Engineering the provitamin A (${\beta}$-carotene) biosynthetic pathway into (carotenoid-free) rice endosperm. Science 287:303-305 https://doi.org/10.1126/science.287.5451.303
  85. Yi G, Shin YM, Choe G, Shin B, Kim YS, Kim KM (2007) Production of herbicide-resistant sweet potato plants transformed with the bar gene. Biotechnol Lett 29:669-675 https://doi.org/10.1007/s10529-006-9278-1
  86. Yoon UH, Jeong JC, Kwak SS, Yang JW, Kim TH, Lee HU, Nam SS, Hahn JH, (2015) Current status of sweetpotato genomics research. Korean J Plant Biotechnol 42:161-167 https://doi.org/10.5010/JPB.2015.42.3.161
  87. Zhang H, Zhang Q, Zhai H, Li Y, Wang X, Liu Q, He S (2017a) Transcript profile analysis reveals important roles of jasmonic acid signalling pathway in the response of sweet potato to salt stress. Sci Rep. 7:40819 https://doi.org/10.1038/srep40819
  88. Zhang K, Wu Z, Tang D, Luo K, Lu H, Liu Y, Dong J, Wang X, Lv C, Wang J, Lu K (2017b) Comparative transcriptome analysis reveals critical function of sucrose metabolism related-enzymes in starch accumulation in the storage root of sweet potato. Front Plant Sci 8:914 https://doi.org/10.3389/fpls.2017.00914
  89. Zhai H, Wang F, Si Z, Huo J, Xing L, An Y, He S, Liu Q (2016) A myo-inositol-1-phosphate synthase gene, IbMIPS1 enhances salt and drought tolerance and stem nematode resistance in transgenic sweet potato. Plant Biotechnol J 14:592-602 https://doi.org/10.1111/pbi.12402
  90. Zhao H, Zhang S, Wang F, Zhao N, He S, Liu Q, Zhai H (2018) Comparative transcriptome analysis of purple-fleshed sweetpotato provides insights into the molecular mechanism of anthocyanin biosynthesis. Front Agr Sci Eng 5:214-225
  91. Ziska LH, Runion GB, Tomecek M, Prior SA, Torbet HA, Sicher R (2009) An evaluation of cassava, sweet potato and field corn as potential carbohydrate sources for bioethanol production in Alabama and Maryland. Biomass Bioenergy 33:1503-1508 https://doi.org/10.1016/j.biombioe.2009.07.014