• Title/Summary/Keyword: genetic variability

Search Result 372, Processing Time 0.043 seconds

Evaluation of selection program by assessing the genetic diversity and inbreeding effects on Nellore sheep growth through pedigree analysis

  • Illa, Satish Kumar;Gollamoori, Gangaraju;Nath, Sapna
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.33 no.9
    • /
    • pp.1369-1377
    • /
    • 2020
  • Objective: The main objectives of the present study were to assess the genetic diversity, population structure and to appraise the efficiency of ongoing selective breeding program in the closed nucleus herd of Nellore sheep through pedigree analysis. Methods: Information utilized in the study was collected from the pedigree records of Livestock Research Station, Palamaner during the period from 1989 to 2016. Genealogical parameters like generation interval, pedigree completeness, inbreeding level, average relatedness among the animals and genetic conservation index were estimated based on gene origin probabilities. Lambs born during 2012 and 2016 were considered as reference population. Two animal models either with the use of Fi or ΔFi as linear co-variables were evaluated to know the effects of inbreeding on the growth traits of Nellore sheep. Results: Average generation interval and realized effective population size for the reference cohort were estimated as 3.38±0.10 and 91.56±1.58, respectively and the average inbreeding coefficient for reference population was 3.32%. Similarly, the effective number of founders, ancestors and founder genome equivalent of the reference population were observed as 47, 37, and 22.48, respectively. Fifty per cent of the genetic variability was explained by 14 influential ancestors in the reference cohort. The ratio fe/fa obtained in the study was 1.21, which is an indicator of bottlenecks in the population. The number of equivalent generations obtained in the study was 4.23 and this estimate suggested the fair depth of the pedigree. Conclusion: Study suggested that the population had decent levels of genetic diversity and a non-significant influence of inbreeding coefficient on growth traits of Nellore lambs. However, small portion of genetic diversity was lost due to a disproportionate contribution of founders and bottlenecks. Hence, breeding strategies which improve the genetic gain, widens the selection process and with optimum levels of inbreeding are recommended for the herd.

Genetic Diversity and Phylogenetic Relationships among Microsporidian Isolates from the Indian Tasar Silkworm, Antheraea mylitta, as Revealed by RAPD Fingerprinting Technique

  • Hassan, Wazid;Nath, B. Surendra
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.29 no.2
    • /
    • pp.169-178
    • /
    • 2014
  • In this study, we investigated genetic diversity of 22 microsporidian isolates infecting tropical tasar silkworm, Antheraea mylitta collected from various geographical forest locations in the state of Jharkhand, India, using polymerase chain reaction (PCR)-based marker assay: random amplified polymorphic DNA (RAPD). A type species, NIK-1s_mys was used as control for comparison. The shape of mature microsporidians was found to be oval to elongate, measuring 3.80 to $5.10{\mu}m$ in length and 2.56 to $3.30{\mu}m$ in width. Of the 20 RAPD primers screened, 16 primers generated reproducible profiles with 298 polymorphic fragments displaying high degree of polymorphism (97%). A total of 14 RAPD primers produced 45 unique putative genetic markers, which were used to differentiate the microsporidians. Calculation of genetic distance coefficients based on dice coefficient method and clustering with un-weighted pair group method using arithmetic average (UPGMA) analysis was conducted to unravel the genetic diversity of microsporidians infecting tasar silkworm. The similarity coefficients varied from 0.059 to 0.980. UPGMA analysis generated a dendrogram with four microsporidian groups, which appear to be different from each other as well as from NIK-1s_mys. Two-dimensional distribution based on Euclidean distance matrix also revealed considerable variability among different microsporidians identified from the tasar silkworms. Clustering of few microsporidian isolates was in accordance with the geographic origin. The results indicate that the RAPD profiles and specific/unique genetic markers can be used for differentiating as well as to identify different microsporidians with considerable accuracy.

Genetic Relationship Analysis of genus Nelumbo Accessions Based on Inter-Simple Sequence Repeats (ISSR) (ISSR 표지에 의한 연속 (Nelumbo)의 유연관계 분석)

  • Ryu, Jai-Hyunk;Choi, Gab-Lim;Lyu, Jae-Il;Lee, Sheong-Chun;Chun, Jong-Un;Shin, Dong-Young;Bae, Chang-Hyu
    • Korean Journal of Medicinal Crop Science
    • /
    • v.18 no.2
    • /
    • pp.86-92
    • /
    • 2010
  • The polymorphism and the genetic relationships among 32 genetic resources of genus Nelumbo from Korea, Japan, China, USA, India, Thailand and Gabong were thoroughly investigated and extensively examined using ISSR markers. Out of 103 loci detected overall, 94 were identified to be polymorphic with a rate of 91.2%. The genetic similarity matrix revealed a wide range of variability among the 32 accessions, spanning from 0.227 to 0.833. The study findings indicate that the Nelumbo accessions have a high genetic diversity, and accordingly carry a germplasm qualifying as good genetic resources for cross breeding. According to the clustering analysis, different subspecies, N. nucifera and N. lutea, were divided into independent groups and all of the N. nucifera accessions could be classified into five categories. Compared to RAPD analysis, ISSR method showed a clearer picture of polymorphism among the accessions and exhibited a definite distinction even among the subspecies. In this respect, ISSR analysis is considered to be more effective in differentiating the accessions and subspecies of the genus Nelumbo than RAPD test.

Genetic parameters and principal components analysis of breeding value for birth and weaning weight in Egyptian buffalo

  • Salem, Mohamed Mahmoud Ibrahim;Amin, Amin Mohamed Said;Ashour, Ayman Fouad;Ibrahim, Mohamed Mohamed El-said;Abo-Ismail, Mohammed Kotb
    • Animal Bioscience
    • /
    • v.34 no.1
    • /
    • pp.12-19
    • /
    • 2021
  • Objective: The objectives of the current study were to study the main environmental factors affecting birth weight (BW) and weaning weight (WW), estimate variance components, genetic parameters and genetic trend and to evaluate the variability and relationships among breeding value of BW and WW using principal components analysis (PCA). Methods: A total of 16,370 records were collected from 8,271 buffalo calves. Genetic parameters and breeding values were estimated using a bivariate animal model which includes direct, maternal and permanent maternal effects. These estimates were standardized and used in PCA. Results: The direct heritability estimates were 0.06 and 0.41 for BW and WW, respectively whereas direct maternal heritability values were 0.03 and 0.14, respectively. Proportions of variance due to permanent environmental effects of dam were 0.455 and 0.280 for BW and WW respectively. The genetic correlation between BW and WWs was weak approaching zero, but the maternal correlation was 0.26. The first two principal components (PC1 and PC2) were estimated utilizing the standardized breeding values according to Kaiser method. The total variance explained by the first two PCs was 71.17% in which 45.91% and 25.25% were explained by PC1 and PC2, respectively. The direct breeding values of BW were related to PC2 but those of WW and maternal breeding values of BW and WWs were associated with PC1. Conclusion: The results of genetic parameters and PCA indicate that BW and WWs were not genetically correlated and improving growth traits of Egyptian buffaloes could be achieved using WW without any adverse effect by BW.

Morphometric variation, genetic diversity and allelic polymorphism of an underutilised species Thaumatococcus daniellii population in Southwestern Nigeria

  • Animasaun, David Adedayo;Afeez, Azeez;Adedibu, Peter Adeolu;Akande, Feyisayo Priscilla;Oyedeji, Stephen;Olorunmaiye, Kehinde Stephen
    • Journal of Plant Biotechnology
    • /
    • v.47 no.4
    • /
    • pp.298-308
    • /
    • 2020
  • Genetic diversity among Thaumatococcus daniellii populations in the southwestern region of Nigeria were assessed using morphometric and molecular markers to determine the population structure and existing genetic relationship for its improvement, conservation and sustainable utilisation. Populations from five locations in each of the six states were used for the study. Morphometric data were collected on folia characters and analysed for variability. Genome DNA was isolated from the plant leaf and amplified by polymerase chain reaction with inter-simple sequence repeat markers (ISSR) to determine the allelic polymorphism, marker effectiveness and genetic relationship of the population. The results showed significant variations in petiole length and leaf dimensions of the populations within and across the states. These morphometric traits are the major parameters that delimit the populations and they correlated significantly at P≤0.05. Analysis of the electrophoregram showed that the ISSR markers are effective for the diversity study. A total of 136 loci were amplified with an average of 7.16 loci per marker, 63.2% of the loci were polymorphic. The Principal Coordinate Analysis revealed that seven factors accounted for 81.6% of the variation and the dendrogram separated the populations into two major groups at a genetic distance of 10 (about 90% similarity) with sub-groups and clusters. Most populations within the state had a high degree of similarity, nonetheless, strong genetic relationship exists among populations from different states. The close relationship between populations across the states suggests a common progenitor, which are likely separated by ecological or geographical isolation mechanisms.

Phenotypic Variation and Genetic Correlation of Elytra Colored Patterns of Multicolored Asian Lady Beetles, Harmon axyridis (Coleoptera: Coccinellidae) in Korea (우리나라에서 무당벌레 (Harmonia axyridis: Coccinellidae) 의 초시무늬의 표현형 변이와 유전적 상관)

  • Seo, Mi-Ja;Kang, Eun-Jin;Kang, Myong-Ki;Lee, Hee-Jin;Seok, Hee-Bong;Lee, Dae-Hong;Park, Sun-Nam;Yu, Yong-Man;Youn, Young-Nam
    • Korean journal of applied entomology
    • /
    • v.46 no.2
    • /
    • pp.235-249
    • /
    • 2007
  • The multicolored Asian lady beetles (Harmonia axyridis) has characteristic color patterns, which show great variability within species. Up to now, it has been well known that main factors affected on individual color pattern variations in the population of H axyridis are external, physical, and environmental characteristics. Indeed, there is as yet no evidence to indicate whether the variation is genetic or environmental factors. Also the factors which produce this variation are unknown in this species, although it is suspected that much of the variation is under genetic control. However, the genetic relationships among many of color types were investigated by observing the progeny of each particular pairs. It is worth mentioning a few particular breeding cases to illustrate certain facets of variability, and to indicate examples suitable for genetic analysis of the color pattern variation.

Variation in Germination and Seedling Growth of Taraxacum officinale Seeds Harvested from Different Seasons

  • Yang, Hyo-Sik
    • The Korean Journal of Ecology
    • /
    • v.24 no.6
    • /
    • pp.353-357
    • /
    • 2001
  • Differential response of genotypes to temporal environmental heterogeneity may contribute to the long-term persistence of these genotypes within a population. In this experiment, we experimentally tested whether groups by season interactions for germination and seedling growth can explain genetic variability within the population. To determine whether seeds collected during the four seasons respond differentially to temperature treatments, two-way ANOVA was performed. This study indicates that seasonal environments have large effects on demography. Groups within populations respond differentially to seasonal environments by influencing population growth that may in turn influence community composition. Most importantly, the study showed that temporal heterogeneity in the environment might functions as a mechanism that maintains within-population genetic diversity.

  • PDF

The Contribution of Molecular Physiology to the Improvement of Nitrogen Use Efficiency in Crops

  • Hirel, Bertrand;Chardon, Fabien;Durand, Jacques
    • Journal of Crop Science and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.123-132
    • /
    • 2007
  • In this review, we discuss the ways in which our understanding of the controls of nitrogen use efficiency applied to crop improvement has been increased through the development of molecular physiology studies using transgenic plants or mutants with modified capacities for nitrogen uptake, assimilation and recycling. More recently, exploiting crop genetic variability through quantitative trait loci and candidate gene detection has opened new perspectives toward the identification of key structural or regulatory elements involved in the control of nitrogen metabolism for improving crop productivity. All together these studies strongly suggest that in the near future nitrogen use efficiency can be improved both by marker-assisted selection and genetic engineering, thus having the most promise for the practical application of increasing the capacity of a wide range of economically important species to take up and utilize nitrogen more efficiently.

  • PDF

Variations of RAPD and Chemical Composition of Capsositiphon fulvescens Culturing in Korea

  • Sun, Sangmi;Chung, Gyuhwa
    • Proceedings of the Korean Society of Fisheries Technology Conference
    • /
    • 2000.05a
    • /
    • pp.169-170
    • /
    • 2000
  • The green marine algae, Capsosiphon fulvescens has been cultivated in south coast of southern Korea for many years on a commercial scale. This species is very popular in Korean as a food supplement because of its attractive flavor and flexcible taste. It is, therefore, necessary to isolate and utilize qualified germplasms for mass production of this economic seaweed. Several reports have been published on phycological applications of RAPDs including the characterization of interspecific genetic variation, the identification of isolates and hybrids, and the study of phylogenetic relationships. However few authors have used RAPDs to assess the genetic variability among populations of a seaweed species(van Oppen et al., 1994; Alberto et al., 1997). The present study was undertaken for characterizing the identities of Capsosiphon fulvescens populations cultivating in Korea through the analysis of PCR based random amplified polymorphic DNAs (Welsh and MacClelland, 1990; Willams et al., 1990) and chemical composition aimed to isolate the useful strains for aquaculture. (omitted)

  • PDF

Characterization of Ty3-gypsy-like Elements in Hibiscus syriacus

  • Jeung, Ji-Ung;Cho, Sung Ki;Lee, Seung Jae;Shin, Jeong Sheop
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.318-327
    • /
    • 2005
  • Southern blot analysis revealed a ubiquitous distribution and high copy number of Ty3-gypsy-like elements in the genome of Hibiscus syriacus. Comparative phylogenetic analysis of the large subunit of Rubisco and the integrase region of Ty3-gypsy elements in various plant species indicated that the retrotransposon-like sequences have different evolutionary histories and their own unique polymorphism in the H. syriacus population. Sequence-tagged site-restriction fragment length polymorphisms (STS-RFLP) analysis also indicated great variability in the numbers and sequences of Ty3-gypsy-like elements within H. syriacus varieties. Ty3-gypsy-like elements may still be active within H. syriacus, since Northern analysis of wounded leaves of H. syriacus variety Saehan with a probe for the integrase domain gave strong hybridization signals. The sequence heterogeneity and ubiquity of the Ty3-gypsy-like elements in H. syriacus genomes could provide reliable DNA markers for line identification as well for the analysis of genetic diversity in H. syriacus.