• 제목/요약/키워드: genetic lineage

검색결과 103건 처리시간 0.022초

mtDNA cytochrome b에 기초한 한국흑우의 계통유전학적 분석 (Phylogenetic Analysis of Korean Black Cattle Based on the Mitochondrial Cytochrome b Gene)

  • 김재환;변미정;김명직;서상원;김영신;고응규;김성우;정경섭;김동훈;최성복
    • 생명과학회지
    • /
    • 제23권1호
    • /
    • pp.24-30
    • /
    • 2013
  • 본 연구는 mtDNA cytochrome b (Cyt b) 유전자 서열을 토대로 한국흑우의 유전적 다양성 및 계통유전학적 위치를 파악하기 위하여 실시하였다. 한국흑우 38두로부터 결정된 mtDNA Cyt b 유전자 전체서열 내에서 염기삽입 및 결실 없이 1개의 silent mutation이 동정되었다. 또한 2개의 haplotype으로 분류되었고, 염기변이율 및 haplotype 다양성지수에 기초한 한국흑우의 유전적 다양성은 기존에 보고된 중국 품종에 비해 낮게 나타났다. 한국, 일본, 중국에 분포하고 있는 12품종 101개 서열을 수집하여 한국흑우와의 유연관계를 확인하였다. 한국흑우에서 분류된 2개의 haplotype은 모두 B. taurus 계열에 포함되었으며, 한우, 일본흑우, Yanbian, Zaosheng 등 4개 품종과 하나의 그룹을 형성하였다. 또한 품종별 Dxy 유전거리 산출 결과, 한국흑우는 한우 및 일본흑우에 비해서 중국의 Yanbian, Zaosheng 품종과 더 가까운 유연관계를 보였다. 본 연구의 결과는 가축유전자원으로서 한국흑우의 보존 및 유전적 특성 구명을 위한 중요한 자료로 활용이 가능할 것으로 사료된다.

Mitochondrial DNA Polymorphism, Maternal Lineage and Correlations with Postnatal Growth of Japanese Black Beef Cattle to Yearling Age

  • Malau-Aduli, A.E.O.;Nishimura-Abe, A.;Niibayas, T.;Yasuda, Y.;Kojima, T.;Abe, S.;Oshima, K;Hasegawa, K.;Komatsu, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권11호
    • /
    • pp.1484-1490
    • /
    • 2004
  • Mitochondrial DNA haplotypes from the displacement-loop (D-loop) region (436 bp) were genotyped and sequenced in Japanese Black beef cattle raised in the same herd. Correlation coefficients between mitochondrial DNA haplotypes, maternal lineage, birth weight, preweaning average daily gain, weaning weight, post weaning average daily gain and yearling weight were computed. The objective was to study the relationship between maternal and postnatal growth traits and to investigate if postnatal growth of calves to yearling age could be accurately predicted from mitochondrial DNA haplotypes. Results of the phylogenetic analysis revealed 17 maternal lineages and four mitochondrial DNA haplotypes. There were strong, positive and highly significant (p<0.001) correlations among maternal traits ranging from 0.52 to 0.98. Similarly, among postnatal growth traits, most of the correlations were also strong, positive and highly significant (p<0.001); the highest correlation of 0.94 was between preweaning average daily gain and weaning weight. However, correlations between mitochondrial DNA haplotypes and postnatal growth traits were very low, mostly negative and non-significant (p>0.05) ranging from -0.05 to 0.1. Prediction of postnatal growth from mitochondrial DNA yielded very low $R^{2}$ values ranging from 0.002 to 0.019. It was concluded that mitochondrial DNA polymorphism has no significant association with postnatal growth from birth to yearling age, and by implication, nuclear rather than cytoplasmic DNA, accounts for most of the genetic variation observed in postnatal growth of Japanese Black cattle. Therefore, mitochondrial DNA genotyping at an early age has no bearing on the accurate prediction of the future growth performance of calves.

Direct reprogramming of fibroblasts into diverse lineage cells by DNA demethylation followed by differentiating cultures

  • Yang, Dong-Wook;Moon, Jung-Sun;Ko, Hyun-Mi;Shin, Yeo-Kyeong;Fukumoto, Satoshi;Kim, Sun-Hun;Kim, Min-Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권6호
    • /
    • pp.463-472
    • /
    • 2020
  • Direct reprogramming, also known as a trans-differentiation, is a technique to allow mature cells to be converted into other types of cells without inducing a pluripotent stage. It has been suggested as a major strategy to acquire the desired type of cells in cell-based therapies to repair damaged tissues. Studies related to switching the fate of cells through epigenetic modification have been progressing and they can bypass safety issues raised by the virus-based transfection methods. In this study, a protocol was established to directly convert fully differentiated fibroblasts into diverse mesenchymal-lineage cells, such as osteoblasts, adipocytes, chondrocytes, and ectodermal cells, including neurons, by means of DNA demethylation, immediately followed by culturing in various differentiating media. First, 24 h exposure of 5-azacytidine (5-aza-CN), a well-characterized DNA methyl transferase inhibitor, to NIH-3T3 murine fibroblast cells induced the expression of stem-cell markers, that is, increasing cell plasticity. Next, 5-aza-CN treated fibroblasts were cultured in osteogenic, adipogenic, chondrogenic, and neurogenic media with or without bone morphogenetic protein 2 for a designated period. Differentiation of each desired type of cell was verified by quantitative reverse transcriptase-polymerase chain reaction/western blot assays for appropriate marker expression and by various staining methods, such as alkaline phosphatase/alizarin red S/oil red O/alcian blue. These proposed procedures allowed easier acquisition of the desired cells without any transgenic modification, using direct reprogramming technology, and thus may help make it more available in the clinical fields of regenerative medicine.

A molecular investigation of Saccharina sessilis from the Aleutian Islands reveals a species complex, necessitating the new combination Saccharina subsessilis

  • Starko, Samuel;Boo, Ga Hun;Martone, Patrick T.;Lindstrom, Sandra C.
    • ALGAE
    • /
    • 제33권2호
    • /
    • pp.157-166
    • /
    • 2018
  • Cryptic species complexes are increasingly recognized in phycological research, obscuring taxonomy and raising questions about factors influencing speciation. A recent exploration of kelp genetic diversity on Haida Gwaii, British Columbia revealed the existence of a new species, Saccharina druehlii, which is cryptic with Saccharina sessilis. This suggests that molecular investigations further north may be required to elucidate the taxonomy and evolutionary history of this lineage. Although, for several decades, S. sessilis was considered a single highly variable species, its taxonomy has been far from straightforward. In particular, Hedophyllum subsessile (Areschoug) Setchell is now recognized as a synonym of S. sessilis in North America, but as a growth form of Saccharina bongardiana in Far East Russia. To resolve this taxonomic confusion, we sequenced mitochondrial (CO1-5P) and nuclear (internal transcribed spacer) markers of S. sessilis populations from the Aleutian Islands, Alaska, USA. Interestingly, none of our sequences matched S. sessilis sensu stricto. Instead, CO1-5P sequences from populations in the central and eastern Aleutians matched exactly S. druehlii with increasing sequence divergence occurring westward. Samples from Attu, the western-most island, composed a genetic group that clearly represents Kjellman's concept of Hafgygia bongardiana f. subsessilis and is distinct enough from S. druehlii and S. sessilis to potentially constitute a distinct species. Therefore, Saccharina subsessilis comb. nov. is proposed for this entity. Our results suggest the existence of a species complex at the crown node of S. sessilis and thus further investigation of Saccharina in Alaskan waters should be conducted to reconstruct the evolutionary history of this fascinating lineage.

The change of Phytophthora infestans Populations in South Korea using Traditional Markers and Genome Analyses

  • Do Hee Kwon;Jin Hee Seo;Yong Ik Jin;Gun Ho Jung;Jang Gyu Choi;Gyu Bin Lee;Kwang Ryong Jo;Jaeyoun Yi;Hwang Bae Sohn;Young Eun Park
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2022년도 추계학술대회
    • /
    • pp.257-257
    • /
    • 2022
  • Late blight, caused by the hemibiotrophic oomycete pathogen Phytophthora infestans, has been the most important disease limiting potato production worldwide. P. infestans undergo major population shifts in agricultural systems via the successive emergence and migration of asexual lineages. The phenotypic and genotypic bases of these selective sweeps are largely unknown but management strategies need to adapt to reflect the changing pathogen population. Here, we used molecular markers to divide the 86 South Korea isolates into six clonal lineages: KR_1_A1, KR_2_A2, SIB-1, US-11, SIB-1 like, and KR-2 like. We documented the emergence of a new lineage, termed SIB-1 like, and KR-2 like, and their rapid replacement of other lineages to exceed 35% of the pathogen population across South Korea. Genome analyses of the Korean P. infestans populations revealed extensive genetic polymorphism, particularly in effector genes. Importantly, SIB-1 like isolates carry an intact Avr8 effector gene that triggers resistance in potato carrying the corresponding R immune receptor gene R8 cloned from Solarium demissum. These findings point toward a strategy for deploying genetic resistance to mitigate the impact of the SIB-1 like lineage and illustrate how pathogen population monitoring, combined with genome analysis, informs the management of devastating disease epidemics. Further study is being done on pathogenicity of the SIB-1 like isolates on cultivated potatoes and changes in expression patterns of disease effector genes within the SIB-1 like isolates

  • PDF

The Role of a Floral Identity Gene LFY in Plant Morphological Evolution

  • Park, Young-Doo;Yoon, Ho-Sung
    • 식물분류학회지
    • /
    • 제37권4호
    • /
    • pp.323-333
    • /
    • 2007
  • The degree to which parallel evolution utilizes the same genetic mechanisms indicates the degree to which developmental processes constrain or channel phenotypic evolution. A transgenetic strategy was used to elucidate the role of one floral meristem identity gene, LEAFY (LFY), in the evolution of rosette flowering, a plant architecture that has evolved in parallel in several lineages of the mustard family, Brassicaceae. The LFY genes from three rosette flowering species were cloned and introduced into a species with the ancestral architecture, and results indicated that changes at the LFY locus contributed to the evolution of rosette flowering in two of the three lineages, but that in each lineage a different set of genetic partners was involved. Also, LFY was shown to play a role in the evolution of flower size. Transgenetic strategy may be useful in the study of plant morphological evolution and parallelism.

Novel pan-lineage VP1 specific degenerate primers for precise genetic characterization of serotype O foot and mouth disease virus circulating in India

  • Sagar Ashok Khulape;Jitendra Kumar Biswal;Chandrakanta Jana;Saravanan Subramaniam;Rabindra Prasad Singh
    • Journal of Veterinary Science
    • /
    • 제24권3호
    • /
    • pp.40.1-40.6
    • /
    • 2023
  • Analysis of the VP1 gene sequence of the foot and mouth disease virus (FMDV) is critical to understanding viral evolution and disease epidemiology. A standard set of primers have been used for the detection and sequence analysis of the VP1 gene of FMDV directly from suspected clinical samples with limited success. The study validated VP1-specific degenerate primer-based reverse transcription polymerase chain reaction (RT-PCR) for the qualitative detection and sequencing of serotype O FMDV lineages circulating in India. The novel degenerate primer-based RT-PCR amplifying the VP1 gene can circumvent the genetic heterogeneity observed in viruses after cell culture adaptation and facilitate precise viral gene sequence analysis from clinical samples.

Molecular Phylogeny and Geography of Korean Medaka Fish (Oryzias latipes)

  • Kang, Tae-Wook;Lee, Eun-Hye;Kim, Moo-Sang;Paik, Sang-Gi;Kim, Sang-Soo;Kim, Chang-Bae
    • Molecules and Cells
    • /
    • 제20권1호
    • /
    • pp.151-156
    • /
    • 2005
  • The phylogeny and geography of the medaka (Oryzias latipes) populations of Korea were investigated by analyzing sequence data for the mitochondrial control region. From the 41 haplotypes including 25 Korean haplotypes detected in 64 Korean specimens and data for the Japanese and Chinese populations, phylogenetic and nested clade analyses were executed to examine the phylogeny of haplogroups and the relation of the genetic architecture of the haplotypes to the historical geography of the Korean medaka fish. The analyses suggest that there are two very distinct lineages of Korean medaka, and that these result from reproductive isolation mechanisms due to geographic barriers. The southeastern lineage has experienced recent range expansion to the western region. The northwestern lineage, sister to Chinese populations, showed evidence of internal range expansion with shared haplotypes.

Ancient Mitochondrial DNA Analyses of Ascaris Eggs Discovered in Coprolites from Joseon Tomb

  • Oh, Chang Seok;Seo, Min;Hong, Jong Ha;Chai, Jong-Yil;Oh, Seung Whan;Park, Jun Bum;Shin, Dong Hoon
    • Parasites, Hosts and Diseases
    • /
    • 제53권2호
    • /
    • pp.237-242
    • /
    • 2015
  • Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples.

mtDNA Diversity and Phylogenetic State of Korean Cattle Breed, Chikso

  • Kim, Jae-Hwan;Byun, Mi Jeong;Kim, Myung-Jick;Suh, Sang Won;Ko, Yeoung-Gyu;Lee, Chang Woo;Jung, Kyoung-Sub;Kim, Eun Sung;Yu, Dae Jung;Kim, Woo Hyun;Choi, Seong-Bok
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권2호
    • /
    • pp.163-170
    • /
    • 2013
  • In order to analyze the genetic diversity and phylogenetic status of the Korean Chikso breed, we determined sequences of mtDNA cytochrome b (cyt b) gene and performed phylogenetic analysis using 239 individuals from 5 Chikso populations. Five non-synonymous mutations of a total of 15 polymorphic sites were identified among 239 cyt b coding sequences. Thirteen haplotypes were defined, and haplotype diversity was 0.4709 ranging from 0.2577 to 0.6114. Thirty-five haplotypes (C1-C35) were classified among 9 Asia and 3 European breeds. C2 was a major haplotype that contained 206 sequences (64.6%) from all breeds used. C3-C13 haplotypes were Chikso-specific haplotypes. C1 and C2 haplotypes contained 80.5% of cyt b sequences of Hanwoo, Yanbian, Zaosheng and JB breeds. In phylogenetic analyses, the Chikso breed was contained into B. taurus lineage and was genetically more closely related to two Chinese breeds than to Korean brown cattle, Hanwoo. These results suggest that Chikso and Hanwoo have a genetic difference based on the mtDNA cyt b gene as well as their coat color, sufficient for classification as a separate breed.