Browse > Article
http://dx.doi.org/10.3347/kjp.2015.53.2.237

Ancient Mitochondrial DNA Analyses of Ascaris Eggs Discovered in Coprolites from Joseon Tomb  

Oh, Chang Seok (Bioanthropology and Paleopathology Lab, Institute of Forensic Science, Seoul National University College of Medicine)
Seo, Min (Department of Parasitology and Research Center for Mummy, Dankook University)
Hong, Jong Ha (Bioanthropology and Paleopathology Lab, Institute of Forensic Science, Seoul National University College of Medicine)
Chai, Jong-Yil (Department of Parasitology and Tropical Medicine, Seoul National University College of Medicine)
Oh, Seung Whan (Hangang Institute of Cultural Heritage)
Park, Jun Bum (Sangmyung University)
Shin, Dong Hoon (Bioanthropology and Paleopathology Lab, Institute of Forensic Science, Seoul National University College of Medicine)
Publication Information
Parasites, Hosts and Diseases / v.53, no.2, 2015 , pp. 237-242 More about this Journal
Abstract
Analysis of ancient DNA (aDNA) extracted from Ascaris is very important for understanding the phylogenetic lineage of the parasite species. When aDNAs obtained from a Joseon tomb (SN2-19-1) coprolite in which Ascaris eggs were identified were amplified with primers for cytochrome b (cyt b) and 18S small subunit ribosomal RNA (18S rRNA) gene, the outcome exhibited Ascaris specific amplicon bands. By cloning, sequencing, and analysis of the amplified DNA, we obtained information valuable for comprehending genetic lineage of Ascaris prevalent among pre-modern Joseon peoples.
Keywords
Ascaris; ancient DNA; cytochrome b; 18S rRNA; Korean mummy;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Loreille O, Roumat E, Verneau O, Bouchet F, Hanni C. Ancient DNA from Ascaris: extraction amplification and sequences from eggs collected in coprolites. Int J Parasitol 2001; 31: 1101-1106.   DOI
2 Leles D, Araujo A, Ferreira LF, Vicente ACP, Iniguez AM. Molecular paleoparasitological diagnosis of Ascaris sp. from coprolites: new scenery of ascariasis in pre-Columbian South America times. Mem Inst Oswaldo Cruz 2008; 103: 106-108.   DOI
3 Seo M, Guk SM, Kim J, Chai JY, Bok GD, Park SS, Oh CS, Kim MJ, Yil YS, Shin MH, Kang IU, Shin DH. Paleoparasitological report on the stool from a Medieval child mummy in Yangju, Korea. J Parasitol 2007; 93: 589-592.   DOI
4 Seo M, Shin DH, Guk SM, Oh CS, Lee EJ, Shin MH, Kim MJ, Lee SD, Kim YS, Yi YS, Spigelman M, Chai JY. Gymnophalloides seoi eggs from the stool of a 17th century female mummy found in Hadong, Republic of Korea. J Parasitol 2008; 94: 467-472.   DOI
5 Seo M, Oh CS, Chai JY, Lee SJ, Park JB, Lee BH, Park JH, Cho GH, Hong DW, Park HU, Shin DH. The influence of differential burial preservation on the recovery of parasite eggs in soil samples from Korean medieval tombs. J Parasitol 2010; 96: 366-370.   DOI
6 Seo M, Oh CS, Chai JY, Jeong MS, Hong SW, Seo YM, Shin DH. The changing pattern of parasitic infection among Korean populations by paleoparasitological study of Joseon Dynasty mummies. J Parasitol 2014; 100: 147-150.   DOI
7 Seo M, Araujo A, Reinhard K, Chai JY, Shin DH. Paleoparasitological studies on mummies of the Joseon Dynasty, Korea. Korean J Parasitol 2014; 52: 235-242.   DOI
8 Shin DH, Chai JY, Park EA, Lee W, Lee H, Lee JS, Choi YM, Koh BJ, Park JB, Oh CS, Bok GD, Kim WL, Lee E, Lee EJ, Seo M. Finding ancient parasite larvae in a sample from a male living in late 17th century Korea. J Parasitol 2009; 95: 768-771.   DOI
9 Shin DH, Oh CS, Chai JY, Lee HJ, Seo M. Enterobius vermicularis eggs discovered in coprolites from a medieval Korean mummy. Korean J Parasitol 2011; 49: 323-326.   DOI
10 Shin DH, Oh CS, Chai JY, Ji MJ, Lee HJ, Seo M. Sixteenth century Gymnophalloides seoi infection on the coast of the Korean Peninsula. J Parasitol 2012; 98(6): 1283-1286.   DOI
11 Willerslev E, Cooper A. Ancient DNA. Proc Biol Sci 2005; 272: 3-16.   DOI
12 Shin DH, Shim SY, Kim MJ, Oh CS, Lee MH, Jung SB, Lee GI, Chai JY, Seo M. V-shaped Pits in Regions of Ancient Baekje Kingdom Paleoparasitologically Confirmed as Likely Human-Waste Reservoirs. Korean J Parasitol 2014; 52: 569-573.   DOI
13 Oh CS, Seo M, Lim NJ, Lee SJ, Lee EJ, Lee SD, Shin DH. Paleoparasitological report on Ascaris aDNA from an ancient East Asian sample. Mem Inst Oswaldo Cruz 2010; 105: 225-228.   DOI
14 Hofreiter M, Serre D, Poinar HN, Kuch M, Paabo S. Ancient DNA. Nat Rev Genet 2001; 2: 353-359.
15 Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 1997; 25: 4876-4882.   DOI
16 Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 2013; 30: 2725-2729.   DOI
17 Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 1997; 25: 3389-3402.   DOI
18 Tamura K, Nei M, Kumar S. Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci USA 2004; 101: 11030-11035.   DOI
19 Saitou N and Nei M. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol Biol Evol 1987; 4: 406-425.
20 Felsenstein J. Confidence limits on phylogenies: An approach using the bootstrap. Evolution 1985; 39: 783-791.   DOI
21 Anderson TJC. The dangers of using single locus markers in parasite epidemiology: Ascaris as a case study. Trends Parasitol 2001; 17: 183-188.   DOI
22 Soe MJ, Nejsum P, Fredensborg BL, Kapel CM. DNA typing of ancient parasite eggs from environmental samples identifies human and animal worm infections in Viking-age settlement. J Parasitol 2015; 101: 57-63.   DOI
23 Sprent JFA. Anatomical distinction between human and pig strains of Ascaris. Nature 1952; 170: 627-628.
24 Ansel M, Thibaut M. Value of the specific distinction between Ascaris lumbricoides Linne 1758 and Ascaris suum Goeze 1782. Int J Parasitol 1973; 3: 317-319.   DOI
25 Maung M. Ascaris lumbricoides Linne, 1758 and Ascaris suum Goeze, 1782: morphological differences between specimens obtained from man and pig. Southeast Asian J Trop Med Public Health 1973; 4: 41-45.
26 Kurimoto H. Morphological, biochemical and immunological studies on Ascaris lumbricoides Linnaeus, 1758 and Ascaris suum Goeze, 1782. Jpn J Parasitol 1974; 23: 251-267.
27 Leles D, Gardner SL, Reinhard K, Iniguez A, Araujo A. Are Ascaris lumbricoides and Ascaris suum a single species? Parasit Vectors 2012; 5: 42.   DOI
28 Liu GH, Wu CY, Song HQ, Wei SJ, Xu MJ, Lin RQ, Zhao GH, Huang SY, Zhu XQ. Comparative analyses of the complete mitochondrial genomes of Ascaris lumbricoides and Ascaris suum from humans and pigs. Gene 2012; 492: 110-116.   DOI
29 Hagel I, Giusti T. Ascaris lumbricoides: an overview of therapeutic targets. Infect Disord Drug Targets 2010; 10: 349-367.   DOI
30 Shao CC, Xu MJ1, Alasaad S, Song HQ, Peng L, Tao JP, Zhu XQ. Comparative analysis of microRNA profiles between adult Ascaris lumbricoides and Ascaris suum. BMC Vet Res. 2014; 10: 99.   DOI