• 제목/요약/키워드: genetic algorithms(GAs)

검색결과 241건 처리시간 0.023초

Minimizing the Total Stretch in Flow Shop Scheduling

  • Yoon, Suk-Hun
    • Management Science and Financial Engineering
    • /
    • 제20권2호
    • /
    • pp.33-37
    • /
    • 2014
  • A flow shop scheduling problem involves scheduling jobs on multiple machines in series in order to optimize a given criterion. The flow time of a job is the amount of time the job spent before its completion and the stretch of the job is the ratio of its flow time to its processing time. In this paper, a hybrid genetic algorithm (HGA) approach is proposed for minimizing the total stretch in flow shop scheduling. HGA adopts the idea of seed selection and development in order to reduce the chance of premature convergence that may cause the loss of search power. The performance of HGA is compared with that of genetic algorithms (GAs).

로트 스트리밍 흐름공정 일정계획의 스트레치 최소화 (On Lot-Streaming Flow Shops with Stretch Criterion)

  • 윤석훈
    • 산업경영시스템학회지
    • /
    • 제37권4호
    • /
    • pp.187-192
    • /
    • 2014
  • Lot-streaming is the process of splitting a job (lot) into sublots to allow the overlapping of operations between successive machines in a multi-stage production system. A new genetic algorithm (NGA) is proposed for an n-job, m-machine, lot-streaming flow shop scheduling problem with equal-size sublots in which the objective is to minimize the total stretch. The stretch of a job is the ratio of the amount of time the job spent before its completion to its processing time. NGA replaces the selection and mating operators of genetic algorithms (GAs) by marriage and pregnancy operators and incorporates the idea of inter-chromosomal dominance and individuals' similarities. Extensive computational experiments for medium to large-scale lot-streaming flow-shop scheduling problems have been conducted to compare the performance of NGA with that of GA.

Neo Fuzzy Set-based Polynomial Neural Networks involving Information Granules and Genetic Optimization

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 심포지엄 논문집 정보 및 제어부문
    • /
    • pp.3-5
    • /
    • 2005
  • In this paper. we introduce a new structure of fuzzy-neural networks Fuzzy Set-based Polynomial Neural Networks (FSPNN). The two underlying design mechanisms of such networks involve genetic optimization and information granulation. The resulting constructs are Fuzzy Polynomial Neural Networks (FPNN) with fuzzy set-based polynomial neurons (FSPNs) regarded as their generic processing elements. First, we introduce a comprehensive design methodology (viz. a genetic optimization using Genetic Algorithms) to determine the optimal structure of the FSPNNs. This methodology hinges on the extended Group Method of Data Handling (GMDH) and fuzzy set-based rules. It concerns FSPNN-related parameters such as the number of input variables, the order of the polynomial, the number of membership functions, and a collection of a specific subset of input variables realized through the mechanism of genetic optimization. Second, the fuzzy rules used in the networks exploit the notion of information granules defined over systems variables and formed through the process of information granulation. This granulation is realized with the aid of the hard C-Means clustering (HCM). The performance of the network is quantified through experimentation in which we use a number of modeling benchmarks already experimented with in the realm of fuzzy or neurofuzzy modeling.

  • PDF

Neural Network Modeling of PECVD SiN Films and Its Optimization Using Genetic Algorithms

  • Han, Seung-Soo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제1권1호
    • /
    • pp.87-94
    • /
    • 2001
  • Silicon nitride films grown by plasma-enhanced chemical vapor deposition (PECVD) are useful for a variety of applications, including anti-reflecting coatings in solar cells, passivation layers, dielectric layers in metal/insulator structures, and diffusion masks. PECVD systems are controlled by many operating variables, including RF power, pressure, gas flow rate, reactant composition, and substrate temperature. The wide variety of processing conditions, as well as the complex nature of particle dynamics within a plasma, makes tailoring SiN film properties very challenging, since it is difficult to determine the exact relationship between desired film properties and controllable deposition conditions. In this study, SiN PECVD modeling using optimized neural networks has been investigated. The deposition of SiN was characterized via a central composite experimental design, and data from this experiment was used to train and optimize feed-forward neural networks using the back-propagation algorithm. From these neural process models, the effect of deposition conditions on film properties has been studied. A recipe synthesis (optimization) procedure was then performed using the optimized neural network models to generate the necessary deposition conditions to obtain several novel film qualities including high charge density and long lifetime. This optimization procedure utilized genetic algorithms, hybrid combinations of genetic algorithm and Powells algorithm, and hybrid combinations of genetic algorithm and simplex algorithm. Recipes predicted by these techniques were verified by experiment, and the performance of each optimization method are compared. It was found that the hybrid combinations of genetic algorithm and simplex algorithm generated recipes produced films of superior quality.

  • PDF

최적 퍼지 직렬형 제어기 설계: Type-2 퍼지 제어기 및 공정경쟁기반 유전자알고리즘을 중심으로 (The Design of Optimized Fuzzy Cascade Controller: Focused on Type-2 Fuzzy Controller and HFC-based Genetic Algorithms)

  • 김욱동;장한종;오성권
    • 전기학회논문지
    • /
    • 제59권5호
    • /
    • pp.972-980
    • /
    • 2010
  • In this study, we introduce the design methodology of an optimized type-2 fuzzy cascade controller with the aid of hierarchical fair competition-based genetic algorithm(HFCGA) for ball & beam system. The ball & beam system consists of servo motor, beam and ball, and remains mutually connected in line in itself. The ball & beam system determines the position of ball through the control of a servo motor. Consequently the displacement change of the position of the moving ball and its ensuing change of the angle of the beam results in the change of the position angle of a servo motor. The type-2 fuzzy cascade controller scheme consists of the outer controller and the inner controller as two cascaded fuzzy controllers. In type-2 fuzzy logic controller(FLC) as the expanded type of type-1 fuzzy logic controller(FLC), we can effectively improve the control characteristic by using the footprint of uncertainty(FOU) of membership function. The control parameters(scaling factors) of each fuzzy controller using HFCGA which is a kind of parallel genetic algorithms(PGAs). HFCGA helps alleviate the premature convergence being generated in conventional genetic algorithms(GAs). We estimated controller characteristic parameters of optimized type-2 fuzzy cascade controller applied ball & beam system such as maximum overshoot, delay time, rise time, settling time and steady-state error. For a detailed comparative analysis from the viewpoint of the performance results and the design methodology, the proposed method for the ball & beam system which is realized by the fuzzy cascade controller based on HFCGA, is presented in comparison with the conventional PD cascade controller based on serial genetic algorithms.

대칭 순회 판매원문제를 위한 Subtour 보존 교차 연산자 (Subtour Preservation Crossover Operator for the Symmetric TSP)

  • 석상문;이홍걸;변성철
    • 대한산업공학회지
    • /
    • 제33권2호
    • /
    • pp.201-212
    • /
    • 2007
  • Genetic algorithms (GAs) are very useful methods for global search and have been applied to various optimization problems. They have two kinds of important search mechanisms, crossover and mutation. Because the performance of GAs depends on these operators, a large number of operators have been developed for improving the performance of GAs. Especially, many researchers have been more interested in a crossover operator than a mutation operator. The reason is that a crossover operator is a main search operator in GAs and it has a more effect on the search performance. So, we also focus on a crossover operator. In this paper we first investigate the drawback of various crossovers, especially subtour-based crossovers and then introduce a new crossover operator to avoid such drawback and to increase efficiency. Also we compare it with several crossover operators for symmetric traveling salesman problem (STSP) for showing the performance of the proposed crossover. Finally, we introduce an efficient simple hybrid genetic algorithm using the proposed operator and then the quality and efficiency of the obtained results are discussed.

유전 알고리즘을 이용한 SVC 계통의 최적 PI 제어기 설계 (A Design of Optimal PI Controller of SVC System using Genetic Algorithms)

  • 정형환;허동렬;왕용필;한길만;김해재
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제49권5호
    • /
    • pp.212-219
    • /
    • 2000
  • This paper deals with a systematic approach to GA-PI controller design for static VAR compensator(SVC) using genetic algorithms(GAs) which are search algorithms based on the mechanics of natural of natural selection and natural genetics, to improve system stability. A SVC, one of the Flexible AC Transmission System(FACTS), constructed by a fixed capacitor(FC) and a thyristor controlled reactor(TCR), is designed and implemented to improve the damping of a synchronous generator, as well as controlling the system voltage. To verify the robustness of the proposed method, considered dynamic response of generator used deviation and generator terminal voltage by applying a power fluctuation and three-phase fault at heavy load, normal load and light load. Thus, we proved usefulness of GA-PI controller design to improve the stability of single machine-infinite bus with SVC system.

  • PDF

유전자 알고리즘과 하중값을 이용한 퍼지 시스템의 최적화 (Optimization of Fuzzy Systems by Means of GA and Weighting Factor)

  • 박병준;오성권;안태천;김현기
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제48권6호
    • /
    • pp.789-799
    • /
    • 1999
  • In this paper, the optimization of fuzzy inference systems is proposed for fuzzy model of nonlinear systems. A fuzzy model needs to be identified and optimized by means of the definite and systematic methods, because a fuzzy model is primarily acquired by expert's experience. The proposed rule-based fuzzy model implements system structure and parameter identification using the HCM(Hard C-mean) clustering method, genetic algorithms and fuzzy inference method. Two types of inference methods of a fuzzy model are the simplified inference and linear inference. in this paper, nonlinear systems are expressed using the identification of structure such as input variables and the division of fuzzy input subspaces, and the identification of parameters of a fuzzy model. To identify premise parameters of fuzzy model, the genetic algorithms is used and the standard least square method with the gaussian elimination method is utilized for the identification of optimum consequence parameters of fuzzy model. Also, the performance index with weighting factor is proposed to achieve a balance between the performance results of fuzzy model produced for the training and testing data set, and it leads to enhance approximation and predictive performance of fuzzy system. Time series data for gas furnace and sewage treatment process are used to evaluate the performance of the proposed model.

  • PDF

Developing a new mutation operator to solve the RC deep beam problems by aid of genetic algorithm

  • Kaya, Mustafa
    • Computers and Concrete
    • /
    • 제22권5호
    • /
    • pp.493-500
    • /
    • 2018
  • Due to the fact that the ratio of their height to their openings is very large compared to normal beams, there are difficulties in the design and analysis of deep beams, which differ in behavior. In this study, the optimum horizontal and vertical reinforcement diameters of 5 different beams were determined by using genetic algorithms (GA) due to the openness/height ratio (L/h), loading condition and the presence of spaces in the body. In this study, the effect of different mutation operators and improved double times sensitive mutation (DTM) operator on GA's performance was investigated. In the study following random mutation (RM), boundary mutation (BM), non-uniform random mutation (NRM), Makinen, Periaux and Toivanen (MPT) mutation, power mutation (PM), polynomial mutation (PNM), and developed DTM mutation operators were applied to five deep beam problems were used to determine the minimum reinforcement diameter. The fitness values obtained using developed DTM mutation operator was higher than obtained from existing mutation operators. Moreover; obtained reinforcement weight of the deep beams using the developed DTM mutation operator lower than obtained from the existing mutation operators. As a result of the analyzes, the highest fitness value was obtained from the applied double times sensitive mutation (DTM) operator. In addition, it was found that this study, which was carried out using GAs, contributed to the solution of the problems experienced in the design of deep beams.

유전 알고리즘을 이용한 폭기조내 용존산소농도 제어 (Control of the Dissolved Oxygen Concentration in the Aeration Using Genetic Algorithms)

  • 김창현;허동렬;김상효;정형환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 D
    • /
    • pp.2479-2481
    • /
    • 2000
  • It is the time-varying dissolved oxygen(DO) dynamics that requires controlling for maintaining the DO concentration in the aeration tank. Many linear controllers have thus been applied. Because of the nonlinearity of the oxygen transfer function together with the time-varying respiration rate, however, the linear controllers are found to poorly perform in many cases. To overcome this limitation, a number of advanced controlling techniques have been developed and applied. In this study, designed GA-PI Controller using genetic algorithm(GA). Genetic algorithms(GAs) are search algorithms based on the mechanics of natural selection and natural genetics. As result of computer simulation, GA-PI controller shows the better control performance especially under the condition of the continuously changing DO set-point. This result represents that GA-PI controller can be a good measure to control the DO concentration in the SBR process which requires the sequential DO set-point change to accomplish the nitrification and denitrification in a single reactor.

  • PDF