• Title/Summary/Keyword: generative art

Search Result 52, Processing Time 0.03 seconds

A Study on the generative background and Characteristics of Gesamtkunstwerk Design Theory advocated by Wiener Werkstätte and Josef Hoffmann (빈 공방과 요제프 호프만이 주창한 총체예술(Gesamtkunstwerk) 디자인론의 생성배경과 특성에 관한 연구)

  • Kim, Hong-Ki
    • Korean Institute of Interior Design Journal
    • /
    • v.25 no.1
    • /
    • pp.115-123
    • /
    • 2016
  • In the turn of the twentieth century, Vienna emerged as a great cultural centre that stood at the forefront of developments in music, psychology, and the natural sciences. Equally influential, and still tremendously popular today, are the designs of the Wiener $Werkst{\ddot{a}}tte$ a group that was at the heart of the city's cultural scene and whose collaborators included such luminaries as the architect Josef Hoffman and the designer Koloman Moser under the slogan of Gesamtkunstwerk. The term "Gesamtkunstwerk" was introduced in the romantic period. It describes the desire for and practice of combining various art forms into a whole, such as performances that combine text, visual arts, various design and architecture. Richard Wagner was one of the early theorists of the concept, inspiring many modernist artists. As a co-founder of the Wiener $Werkst{\ddot{a}}tte$, Josef Hoffmann had a decisive influence on modern Viennese architecture and Interior design on the basis of the concept of Gesamtkunstwerk. In this view point, this study is to analyze about the generative background and design characteristics of gesamtkunstwerk advocated Wiener $Werkst{\ddot{a}}tte$. Josef Hoffmann was by all accounts a very successful architect and Interior designer in Vienna. His influence would undoubtedly have been felt simply because of his talent and energy. His special ability to range across multiple domains, coupled with a willingness to collaborate with other artists has created a synthesis and synergy that is compelling to this day.

KAB: Knowledge Augmented BERT2BERT Automated Questions-Answering system for Jurisprudential Legal Opinions

  • Alotaibi, Saud S.;Munshi, Amr A.;Farag, Abdullah Tarek;Rakha, Omar Essam;Al Sallab, Ahmad A.;Alotaibi, Majid
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.6
    • /
    • pp.346-356
    • /
    • 2022
  • The jurisprudential legal rules govern the way Muslims react and interact to daily life. This creates a huge stream of questions, that require highly qualified and well-educated individuals, called Muftis. With Muslims representing almost 25% of the planet population, and the scarcity of qualified Muftis, this creates a demand supply problem calling for Automation solutions. This motivates the application of Artificial Intelligence (AI) to solve this problem, which requires a well-designed Question-Answering (QA) system to solve it. In this work, we propose a QA system, based on retrieval augmented generative transformer model for jurisprudential legal question. The main idea in the proposed architecture is the leverage of both state-of-the art transformer models, and the existing knowledge base of legal sources and question-answers. With the sensitivity of the domain in mind, due to its importance in Muslims daily lives, our design balances between exploitation of knowledge bases, and exploration provided by the generative transformer models. We collect a custom data set of 850,000 entries, that includes the question, answer, and category of the question. Our evaluation methodology is based on both quantitative and qualitative methods. We use metrics like BERTScore and METEOR to evaluate the precision and recall of the system. We also provide many qualitative results that show the quality of the generated answers, and how relevant they are to the asked questions.

Generation of Super-Resolution Benchmark Dataset for Compact Advanced Satellite 500 Imagery and Proof of Concept Results

  • Yonghyun Kim;Jisang Park;Daesub Yoon
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.4
    • /
    • pp.459-466
    • /
    • 2023
  • In the last decade, artificial intelligence's dramatic advancement with the development of various deep learning techniques has significantly contributed to remote sensing fields and satellite image applications. Among many prominent areas, super-resolution research has seen substantial growth with the release of several benchmark datasets and the rise of generative adversarial network-based studies. However, most previously published remote sensing benchmark datasets represent spatial resolution within approximately 10 meters, imposing limitations when directly applying for super-resolution of small objects with cm unit spatial resolution. Furthermore, if the dataset lacks a global spatial distribution and is specialized in particular land covers, the consequent lack of feature diversity can directly impact the quantitative performance and prevent the formation of robust foundation models. To overcome these issues, this paper proposes a method to generate benchmark datasets by simulating the modulation transfer functions of the sensor. The proposed approach leverages the simulation method with a solid theoretical foundation, notably recognized in image fusion. Additionally, the generated benchmark dataset is applied to state-of-the-art super-resolution base models for quantitative and visual analysis and discusses the shortcomings of the existing datasets. Through these efforts, we anticipate that the proposed benchmark dataset will facilitate various super-resolution research shortly in Korea.

Using artificial intelligence to detect human errors in nuclear power plants: A case in operation and maintenance

  • Ezgi Gursel ;Bhavya Reddy ;Anahita Khojandi;Mahboubeh Madadi;Jamie Baalis Coble;Vivek Agarwal ;Vaibhav Yadav;Ronald L. Boring
    • Nuclear Engineering and Technology
    • /
    • v.55 no.2
    • /
    • pp.603-622
    • /
    • 2023
  • Human error (HE) is an important concern in safety-critical systems such as nuclear power plants (NPPs). HE has played a role in many accidents and outage incidents in NPPs. Despite the increased automation in NPPs, HE remains unavoidable. Hence, the need for HE detection is as important as HE prevention efforts. In NPPs, HE is rather rare. Hence, anomaly detection, a widely used machine learning technique for detecting rare anomalous instances, can be repurposed to detect potential HE. In this study, we develop an unsupervised anomaly detection technique based on generative adversarial networks (GANs) to detect anomalies in manually collected surveillance data in NPPs. More specifically, our GAN is trained to detect mismatches between automatically recorded sensor data and manually collected surveillance data, and hence, identify anomalous instances that can be attributed to HE. We test our GAN on both a real-world dataset and an external dataset obtained from a testbed, and we benchmark our results against state-of-the-art unsupervised anomaly detection algorithms, including one-class support vector machine and isolation forest. Our results show that the proposed GAN provides improved anomaly detection performance. Our study is promising for the future development of artificial intelligence based HE detection systems.

Comparative Analysis of Recent Studies on Aspect-Based Sentiment Analysis

  • Faiz Ghifari Haznitrama;Ho-Jin Choi
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.05a
    • /
    • pp.647-649
    • /
    • 2023
  • Sentiment analysis as part of natural language processing (NLP) has received much attention following the demand to understand people's opinions. Aspect-based sentiment analysis (ABSA) is a fine-grained subtask from sentiment analysis that aims to classify sentiment at the aspect level. Throughout the years, researchers have formulated ABSA into various tasks for different scenarios. Unlike the early works, the current ABSA utilizes many elements to improve performance and provide more details to produce informative results. These ABSA formulations have provided greater challenges for researchers. However, it is difficult to explore ABSA's works due to the many different formulations, terms, and results. In this paper, we conduct a comparative analysis of recent studies on ABSA. We mention some key elements, problem formulations, and datasets currently utilized by most ABSA communities. Also, we conduct a short review of the latest papers to find the current state-of-the-art model. From our observations, we found that span-level representation is an important feature in solving the ABSA problem, while multi-task learning and generative approach look promising. Finally, we review some open challenges and further directions for ABSA research in the future.

Improved Cycle GAN Performance By Considering Semantic Loss (의미적 손실 함수를 통한 Cycle GAN 성능 개선)

  • Tae-Young Jeong;Hyun-Sik Lee;Ye-Rim Eom;Kyung-Su Park;Yu-Rim Shin;Jae-Hyun Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.908-909
    • /
    • 2023
  • Recently, several generative models have emerged and are being used in various industries. Among them, Cycle GAN is still used in various fields such as style transfer, medical care and autonomous driving. In this paper, we propose two methods to improve the performance of these Cycle GAN model. The ReLU activation function previously used in the generator was changed to Leaky ReLU. And a new loss function is proposed that considers the semantic level rather than focusing only on the pixel level through the VGG feature extractor. The proposed model showed quality improvement on the test set in the art domain, and it can be expected to be applied to other domains in the future to improve performance.

A Study of 3D Digital Fashion Design Using Kazmir Malevich's Formative Elements as AI Prompt (카지미르 말레비치의 조형적 요소를 AI 프롬프트로 활용한 3D 디지털 패션디자인 연구)

  • Jooyoung Lee
    • Journal of Fashion Business
    • /
    • v.28 no.3
    • /
    • pp.122-139
    • /
    • 2024
  • Image-generated AI is rapidly emerging as a powerful tool to augment human creativity and transform the art and design process through deep learning capabilities. The purpose of this study was to propose and demonstrate the feasibility of a new design development method that combined traditional design methods and technology by constructing image-generated AI prompts based on artists' formative elements. The study methodology consisted of analyzing Kazmir Malevich's theoretical considerations and applying them to AI prompts for design, print pattern development, and 3D digital design. This study found that the suprematist works of Kazmir Malevich were suitable as design and print pattern prompts due to their clear geometric shapes, colors, and spatial arrangement. The AI-prompted designs and print patterns produced diverse results quickly and enabled an efficient design process compared to traditional methods, although additional refinement was required to perfect the details. The AI-generated designs were successfully produced as 3D garments, thereby demonstrating that AI technology could significantly contribute to fashion design through its integration with artistic principles. This study has academic significance in that it proposes a prompt composition method applicable to fashion design by combining AI and artistic elements. It also has industrial significance in that it contributes to design innovation and the implementation of creative ideas by presenting an AI-based design process that can be practically applied.

Analysis of Discriminatory Patterns in Performing Arts Recognized by Large Language Models (LLMs): Focused on ChatGPT (거대언어모델(LLM)이 인식하는 공연예술의 차별 양상 분석: ChatGPT를 중심으로)

  • Jiae Choi
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.401-418
    • /
    • 2023
  • Recently, the socio-economic interest in Large Language Models (LLMs) has been growing due to the emergence of ChatGPT. As a type of generative AI, LLMs have reached the level of script creation. In this regard, it is important to address the issue of discrimination (sexism, racism, religious discrimination, ageism, etc.) in the performing arts in general or in specific performing arts works or organizations in a large language model that will be widely used by the general public and professionals. However, there has not yet been a full-scale investigation and discussion on the issue of discrimination in the performing arts in large-scale language models. Therefore, the purpose of this study is to textually analyze the perceptions of discrimination issues in the performing arts from LMMs and to derive implications for the performing arts field and the development of LMMs. First, BBQ (Bias Benchmark for QA) questions and measures for nine discrimination issues were used to measure the sensitivity to discrimination of the giant language models, and the answers derived from the representative giant language models were verified by performing arts experts to see if there were any parts of the giant language models' misperceptions, and then the giant language models' perceptions of the ethics of discriminatory views in the performing arts field were analyzed through the content analysis method. As a result of the analysis, implications for the performing arts field and points to be noted in the development of large-scale linguistic models were derived and discussed.

A study on The Design Education Program of BAUHAUS (BAUHAUS의 조형교육방법에 관한 연구)

  • 하상오
    • Archives of design research
    • /
    • v.14
    • /
    • pp.209-219
    • /
    • 1996
  • The BAUHAUS started as the purpose of training the people who are designers in the industnal society or who have artistic talent as architect, handicraftman, sculptor, and in the construction, it was based for entire organizational training for every handicrafts in the aspect of the art and form. The preliminary course that became the generative power of the human training that have possessed creativity was studied and put in to practice through the formative activity of dIverse form and method according to the educational idea and the educational method of the teachers who are in charge of such edudation, and common access method that forms the fundamental basis was centered not only human being as a formative principle, and analyzed thoroughly with biological function and further until mental and philosophical part but served and thought synthetically and took principal objects at the formative practice. Together with this, the characteristic structure of the BA UHA US's formative education was taking the grouptherapy educational method where there was not distinguish teacher and student and through the liberal criticism and they realize by experience themselves that how to solve the certain subject and pursue the form by compare each other's solutions.

  • PDF

CAB: Classifying Arrhythmias based on Imbalanced Sensor Data

  • Wang, Yilin;Sun, Le;Subramani, Sudha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.7
    • /
    • pp.2304-2320
    • /
    • 2021
  • Intelligently detecting anomalies in health sensor data streams (e.g., Electrocardiogram, ECG) can improve the development of E-health industry. The physiological signals of patients are collected through sensors. Timely diagnosis and treatment save medical resources, promote physical health, and reduce complications. However, it is difficult to automatically classify the ECG data, as the features of ECGs are difficult to extract. And the volume of labeled ECG data is limited, which affects the classification performance. In this paper, we propose a Generative Adversarial Network (GAN)-based deep learning framework (called CAB) for heart arrhythmia classification. CAB focuses on improving the detection accuracy based on a small number of labeled samples. It is trained based on the class-imbalance ECG data. Augmenting ECG data by a GAN model eliminates the impact of data scarcity. After data augmentation, CAB classifies the ECG data by using a Bidirectional Long Short Term Memory Recurrent Neural Network (Bi-LSTM). Experiment results show a better performance of CAB compared with state-of-the-art methods. The overall classification accuracy of CAB is 99.71%. The F1-scores of classifying Normal beats (N), Supraventricular ectopic beats (S), Ventricular ectopic beats (V), Fusion beats (F) and Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively. Unclassifiable beats (Q) heartbeats are 99.86%, 97.66%, 99.05%, 98.57% and 99.88%, respectively.