• Title/Summary/Keyword: generation effect

Search Result 4,267, Processing Time 0.031 seconds

Antibacterial and Antiviral Activities of Multi-coating Polyester Textiles (다중 코팅 폴리에스터 섬유 여재의 항균 및 항바이러스 특성)

  • Ko, Sangwon;Lee, Jae-Young;Park, Duckshin
    • Applied Chemistry for Engineering
    • /
    • v.33 no.4
    • /
    • pp.444-450
    • /
    • 2022
  • The effect of coated polyester (PET) textiles with metal oxide, chitosan, and copper ion on the antibacterial and antiviral activities was evaluated to investigate the applicability of multi-coated PET textiles as antiviral materials. Compared to coated PETs with a single agent, multi-coated PETs reduced the loading amount of coating materials as well as the contact time with bacteria for a bacterial cell number of < 10 CFU/mL, which was not detectable with the naked eyes. Metal oxides generate reactive oxygen species (ROS) such as free radicals by a catalytic reaction, and copper ions can promote contact killing by the generation of ROS. Chitosan not only enhanced antibacterial activities due to amine groups, but enabled it to be a template to load copper ions. We observed that multi-coated PET textiles have both antibacterial activities for E. coli and S. aureus and antiviral efficiency of more than 99.9% for influenza A (H1N1) and SARS-CoV-2. The multi-coated PET textiles could also be prepared via a roll-to-roll coating process, which showed high antiviral efficacy, demonstrating its potential use in air filtration and antiviral products such as masks and personal protective equipment.

Effect Analysis of Offshore Wind Farms on VHF band Communications (VHF 대역 통신에 대한 해상풍력 발전단지의 영향성 분석)

  • Oh, Seongwon;Park, Taeyong
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.2
    • /
    • pp.307-313
    • /
    • 2022
  • As the development of renewable energy expands internationally to cope with global warming and climate change, the share of wind power generation has been gradually increasing. Although wind farms can produce electric power for 24 h a day compared to solar power plants, Their interfere with the operation of nearby radars or communication equipment must be analyzed because large-scale wind power turbines are installed. This study analyzed whether a land radio station can receive sufficient signals when a ship sailing outside the offshore wind farm transmits distress signals on the VHF band. Based on the geographic information system digital map around the target area, wind turbine CAD model, and wind farm layout, the area of interest and wind farm were modeled to enable numerical analysis. Among the high frequency analysis techniques suitable for radio wave analysis in a wide area, a dedicated program applying physical optics (PO) and shooting and bouncing ray (SBR) techniques were used. Consequently, the land radio station could receive the electromagnetic field above the threshold of the VHF receiver when a ship outside the offshore wind farm transmitted a distress communication signal. When the line of sight between the ships and the land station are completely blocked, the strength of the received field decreases, but it is still above the threshold. Hence, although a wind farm is a huge complex, a land station can receive the electromagnetic field from the ship's VHF transmitter because the wave length of the VHF band is sufficiently long to have effects such as diffraction or reflection.

Reduction of ammonia conversion from urea by adding acetohydroxamic acid (Acetohydroxamic acid 이용한 Urea로부터 암모니아 발생 저감 연구)

  • Yun, Gwang Su;Oh, Ha Eun;Jung, Min Woong;Hwang, Okhwa;Yun, Yeo-Myeong
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.29 no.4
    • /
    • pp.5-13
    • /
    • 2021
  • Ammonia, primarily originating from urinary urea of the livestock manure, is known to play as a major precursor of fine particulate matter (PM2.5) generation which leads to a decrease in air quality and to harmful effects on public health. The objective of this study was to evaluate the effect of acetohydroxamic acid (AHA) addition on inhibition of ammonia conversion from urea. The experiment was performed at different urea concentration (500-4,000 mg Urea-N/L), AHA concentration (0-4,000 mg AHA/L), pHs (pH 6-10), and temperature (10-35℃). The result showed that the urease inhibition efficiency increased at higher concentration of AHA. However, the specific urease inhibition activity decreased at higher pH, showing 867.1±6.7 Unit/g AHA at pH 6 and 1,167.9±17.4 Unit/g AHA at pH 10, respectively. Decreased urease inhibition efficiency at both AHA and control was observed at higher temperature. This finding indicates that AHA can be used as the urease inhibitor for reducing ammonia emission in the management of livestock manure.

Application of Primary Rat Corneal Epithelial Cells to Evaluate Toxicity of Particulate Matter 2.5 to the Eyes (눈에 대한 미세먼지의 독성 평가를 위한 쥐 각막 상피 세포의 적용)

  • Kim, Da Hye;Hwangbo, Hyun;Lee, Hyesook;Cheong, Jaehun;Choi, Yung Hyun
    • Journal of Life Science
    • /
    • v.32 no.9
    • /
    • pp.712-720
    • /
    • 2022
  • The purpose of this study was to investigate the efficacy of rat corneal-derived epithelial cells as an in vitro model to evaluate the harmfulness of the cornea caused by particulate matter 2.5 (PM2.5). To establish an experimental model for the effect of PM2.5 on corneal epithelial cells, it was confirmed that primary cultured cells isolated from rat eyes were corneal epithelial cells through pan-cytokeratin staining. Our results showed that PM2.5 treatment reduced cell viability of primary rat corneal epithelial (RCE) cells, which was associated with the induction of apoptosis. PM2.5 treatment also increased the generation of reactive oxygen species due to mitochondrial dysfunction. In addition, the production of nitric oxide and inflammatory cytokines was increased in PM2.5-treated RCE cells. Furthermore, through heatmap analysis showing various expression profiling between PM2.5-exposed and unexposed RCE cells, we proposed five genes, including BLNK, IL-1RA, Itga2b, ABCb1a and Ptgs2, as potential targets for clinical treatment of PM-related ocular diseases. These findings indicate that the primary RCE cell line is a useful in vitro model system for the study of PM2.5-mediated pathological mechanisms and that PM2.5-induced oxidative and inflammatory responses are key factors in PM2.5-induced ocular surface disorders.

Pyrolysis Effect of Nitrous Oxide Depending on Reaction Temperature and Residence Time (반응온도 및 체류시간에 따른 아산화질소 열분해 효과)

  • Park, Juwon;Lee, Taehwa;Park, Dae Geun;Kim, Seung Gon;Yoon, Sung Hwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.1074-1081
    • /
    • 2021
  • Nitrous oxide (N2O) is one of the six major greenhouse gases and is known to produce a greenhouse ef ect by absorbing infrared radiation in the atmosphere. In particular, its global warming potential (GWP) is 310 times higher than that of CO2, making N2O a global concern. Accordingly, strong environmental regulations are being proposed. N2O reduction technology can be classified into concentration recovery, catalytic decomposition, and pyrolysis according to physical methods. This study intends to provide information on temperature conditions and reaction time required to reduce nitrogen oxides with cost. The high-temperature ranges selected for pyrolysis conditions were calculated at intervals of 100 K from 1073 K to 1373 K. Under temperatures of 1073 K and 1173 K, the N2O reduction rate and nitrogen monoxide concentration were observed to be proportional to the residence time, and for 1273 K, the N2O reduction rate decreased due to generation of the reverse reaction as the residence time increased. Particularly for 1373 K, the positive and reverse reactions for all residence times reached chemical equilibrium, resulting in a rather reduced reaction progression to N2O reduction.

A Study on the Mixing of Dilution Air and Ammonia in the Ammonia Mixing Pipe of the Thermal Power Plant De-NOx Facility (화력발전소 탈질설비의 암모니아 혼합 관에서 희석 공기와 암모니아의 혼합에 관한 연구)

  • Kim, Ki-Ho;Ha, Ji-Soo
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.2
    • /
    • pp.49-55
    • /
    • 2022
  • According to reinforce environmental regulations, coal power plants have used selective catalytic reduction using ammonia as a reducing agent to reduce the amount of nitrogen oxide generation. The purpose of the present study was to derive a mixing device for effectively mixing dilute air and ammonia in the ammonia mixing pipe by performing computational fluid dynamic analysis. The mixing effect was compared by analysing the %RMS of ammonia concentration at the down stream cross section in the mixing pipe and the 16 outlets based on the case 1-1 shape, which is an existing mixing pipe without a mixing device. The mixing device was performed by changing the positions of a square plate on the downstream side of the ammonia supply pipe and an arc-shaped plate on the wall of the mixing pipe. In the case of the existing geometry(Case 1-1), the %RMS of ammonia concentration at the 16 outlets was 29.50%. The shape of the mixing device for Case 3-2 had a square plate on the downstream side of the ammonia supply pipe and an arc plate was installed adjacent to it. The %RMS of ammonia concentration for Case 3-2 was 2.08% at 16 outlets and it could be seen that the shape of Case 3-2 was the most effective mixing shape for ammonia mixing.

Impact of Microbiota on Gastrointestinal Cancer and Anticancer Therapy (미생물 균총이 위장관암과 항암제에 미치는 영향)

  • Kim, Sa-Rang;Lee, Jung Min
    • Journal of Life Science
    • /
    • v.32 no.5
    • /
    • pp.391-410
    • /
    • 2022
  • Human microbiota is a community of microorganisms, including bacteria, fungi, and viruses, that inhabit various locations of the body, such as the gut, oral, and skin. Along with the development of metabolomic analysis and next-generation sequencing techniques for 16S ribosomal RNA, it has become possible to analyze the population for subtypes of microbiota, and with these techniques, it has been demonstrated that bacterial microbiota are involved in the metabolic and immunological processes of the hosts. While specific bacteria of microbiota, called commensal bacteria, positively affect hosts by producing essential nutrients and protecting hosts against other pathogenic microorganisms, dysbiosis, an abnormal microbiota composition, disrupts homeostasis and thereby has a detrimental effect on the development and progression of various types of diseases. Recently, several studies have reported that oral and gut bacteria of microbiota are involved in the carcinogenesis of gastrointestinal tumors and the therapeutic effects of anticancer therapy, such as radiation, chemotherapy, targeted therapy, and immunotherapy. Studying the complex relationships (bacterial microbiota-cancer-immunity) and microbiota-related carcinogenic mechanisms can provide important clues for understanding cancer and developing new cancer treatments. This review provides a summary of current studies focused on how bacterial microbiota affect gastrointestinal cancer and anticancer therapy and discusses compelling possibilities for using microbiota as a combinatorial therapy to improve the therapeutic effects of existing anticancer treatments.

Effect of Embryo Age, Growth Regulators, and Low Temperature Treatment on Regeneration and Plant Growth in Immature Embryo Culture of Barley (보리의 미숙배배양 시 배의 성숙정도, 생장조절물질 및 저온처리가 식물체 재생과 생육에 미치는 영향)

  • Park, Yong-Chu;Yu, Chang-Yeon;Cho, Dong-Ha;Chang, Byong-Ho;Chung, Il-Min;Ahn, Sang-Deuk
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.6
    • /
    • pp.571-576
    • /
    • 1994
  • This study was conducted to determine the effects of embryo age, growth regulators, low temperature treatment on regeneration, plant growth, and heading in immature embryo culture of Barley. Shoot and root development was more in older than in younger excised embryos, and more in a medium without kinetin than in one with kinetin. The rate of survival was higher on medium without growth regulators and lower on medium with kinetin 5 mg/L because of retarded plant growth. Embryo age and media did not completely replace low temperature treatment. Twenty- and 14 day-old embryos responded by flowering after 4 weeks of vernalization. Embryo culture at 14- and 20 days after anthesis coupled with 4-week cold treatment shortens generation time of barley. When 20 day immature embryos of barley (cv. Olbori) was treated low temperature treatment for 4 weeks, the rate of heading was better than the other treatment.

  • PDF

Study on the Shape of Appendage for the Reduction of Motion of Floating Wind Turbine Platforms (부유식 풍력 하부구조물의 운동 저감을 위한 부가물 형상 연구)

  • Dae-Won Seo;Jaehyeon Ahn;Jungkeun Oh
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.28 no.7
    • /
    • pp.1201-1208
    • /
    • 2022
  • In general, to maximize the supply and efficiency of floating offshore wind power generation energy, the motion caused by wave attenuation of the substructure must be reduced. According to previous studies, the motion response was reduced due to the vortex viscosity generated by the damping plate installed in the lower structure among the waves. In this study, a 5 MW semi-submersible OC5 platform and two platforms with attenuation plates were designed, and free decay experiments and numerical calculations were performed to confirm the effect of reducing motion due to vortex viscosity. As a result of the model test, when the heave free decay tests were conducted at drop heights of 30 mm, 40 mm, and 50 mm, compared with the OC5 platform, the platform with two types of damping plates attached had relatively improved motion damping performance. In the model test and numerical calculation results, the damping plate models, KSNU Plate 1 and KSNU Plate 2, were 1.1 times and 1.3 times lower than OC5, respectively, and the KSNU Plate 2 platform showed about two times better damping performance than OC5. This study shows that the area of the damping plate and the vortex viscosity are closely related to the damping rate of the heave motion.

Furnace Annealing Effect on Ferroelectric Hf0.5Zr0.5O2 Thin Films (강유전체 Hf0.5Zr0.5O2 박막의 퍼니스 어닐링 효과 연구)

  • Min Kwan Cho;Jeong Gyu Yoo;Hye Ryeon Park;Jong Mook Kang;Taeho Gong;Yong Chan Jung;Jiyoung Kim;Si Joon Kim
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.1
    • /
    • pp.88-92
    • /
    • 2023
  • The ferroelectricity in Hf0.5Zr0.5O2 (HZO) thin films is one of the most interesting topics for next-generation nonvolatile memory applications. It is known that a crystallization process is required at a temperature of 400℃ or higher to form an orthorhombic phase that results in the ferroelectric properties of the HZO film. However, to realize the integration of ferroelectric HZO films in the back-end-of-line, it is necessary to reduce the annealing temperature below 400℃. This study aims to comprehensively analyze the ferroelectric properties according to the annealing temperature (350-500℃) and time (1-5 h) using a furnace as a crystallization method for HZO films. As a result, the ferroelectric behaviors of the HZO films were achieved at a temperature of 400℃ or higher regardless of the annealing time. At the annealing temperature of 350℃, the ferroelectric properties appeared only when the annealing time was sufficiently increased (4 h or more). Based on these results, it was experimentally confirmed that the optimization of the annealing temperature and time is very important for the ferroelectric phase crystallization of HZO films and the improvement of their ferroelectric properties.