DOI QR코드

DOI QR Code

부유식 풍력 하부구조물의 운동 저감을 위한 부가물 형상 연구

Study on the Shape of Appendage for the Reduction of Motion of Floating Wind Turbine Platforms

  • 서대원 (군산대학교 조선해양공학과) ;
  • 안재현 (군산대학교 조선해양공학과) ;
  • 오정근 (군산대학교 조선해양공학과)
  • Dae-Won Seo (Naval Architecture Engineering, Kunsan National University) ;
  • Jaehyeon Ahn (Naval Architecture Engineering, Kunsan National University) ;
  • Jungkeun Oh (Naval Architecture Engineering, Kunsan National University)
  • 투고 : 2022.06.20
  • 심사 : 2022.12.28
  • 발행 : 2022.12.31

초록

일반적으로 부유식 해상풍력발전 에너지의 수급성과 효율을 극대화하기 위해서는 하부구조물의 파랑 감쇠로 인한 운동을 저감시키는 것이 중요하다. 선행 연구들에 따르면 파도 중 하부구조물에 설치된 감쇠판에 의해서 발생한 와류점성으로 인해 운동 응답이 감소되는 것으로 나타났다. 본 연구에서는 5MW급 반잠수식 OC5 플랫폼과 감쇠판이 부착된 두가지 플랫폼을 설계하고, 와류점성으로 인한 운동저감효과를 확인하기 위해 자유감쇠실험과 수치계산을 수행하였다. 모형시험 결과로 낙하 높이를 30 mm, 40 mm, 50 mm에서의 상하 자유감쇠실험을 수행하였을 때 OC5 플랫폼 대비 두 가지의 형태의 감쇠판이 부착된 플랫폼이 상대적으로 운동감쇠성능이 향상되었다. 모형시험과 수치계산 결과에서 형상화한 감쇠판 모델(KSNU Plate 1, KSNU Plate 2)들이 각각 OC5 대비 상하운동 진폭이 1.1배, 1.3배 각각 감소했으며, KSNU Plate 2 플랫폼은 KSNU Plate 1 플랫폼보다 OC5 대비 약 2배 감쇠성능이 좋아진 것으로 나타났다. 본 연구에서는 감쇠판의 면적과 와류점성이 상하동요의 감쇠율과 밀접한 관련을 보여준다.

In general, to maximize the supply and efficiency of floating offshore wind power generation energy, the motion caused by wave attenuation of the substructure must be reduced. According to previous studies, the motion response was reduced due to the vortex viscosity generated by the damping plate installed in the lower structure among the waves. In this study, a 5 MW semi-submersible OC5 platform and two platforms with attenuation plates were designed, and free decay experiments and numerical calculations were performed to confirm the effect of reducing motion due to vortex viscosity. As a result of the model test, when the heave free decay tests were conducted at drop heights of 30 mm, 40 mm, and 50 mm, compared with the OC5 platform, the platform with two types of damping plates attached had relatively improved motion damping performance. In the model test and numerical calculation results, the damping plate models, KSNU Plate 1 and KSNU Plate 2, were 1.1 times and 1.3 times lower than OC5, respectively, and the KSNU Plate 2 platform showed about two times better damping performance than OC5. This study shows that the area of the damping plate and the vortex viscosity are closely related to the damping rate of the heave motion.

키워드

과제정보

본 논문은 군산대학교의 지원을 받아 수행된 연구결과임을 밝힙니다.

참고문헌

  1. Goupee, A. J., Bonjun J. Koo, Richard W. Kimball, Kostas F. Lambrakos, and Habib J. Dagher(2014), Experiment comparison of three floating wind turbine concepts, Journal of Offshore Mechanics and Arctic Engineering, 136(2), pp. 020906-1-9. 
  2. Jiang Y., G. Hu, Z. Zong, L. Zou, and G. Jin(2020), Influence of an Integral Heave Plate on the Dynamic Response of Floating Offshore Wind Turbine Under Operational and Storm Conditions, Energies, 13, pp. 1-18. 
  3. Kang, Y. H.(2015), New-Renewable Energy Resource Map Upgrade and Market Potential Analysis. 
  4. Kim, Y. R.(2019), Development of an Evaluation Procedure for Seakeeping Performance of High-speed Planing Hull using Hybrid Method, Division of Navigation Science, Korea Maritime and Ocean University, Jounal of the Society of Navla Architects of Korea, 136(2), pp. 200-210.  https://doi.org/10.3744/SNAK.2019.56.3.200
  5. Subbulakshmi, A., Jithin Jose, R. Sundaravadivlu, and R. PanneerSelvam(2015), Effect of Viscous Damping on Hydrodynamic Response of Spar with Heave Plate, Aquatic Procedia, 4, pp. 508-515.  https://doi.org/10.1016/j.aqpro.2015.02.066
  6. Mello, P. C., Edgard B. Malta, Raiza O. P. da Silva, Matheus H. O. Candido, Lucas Henrique S. do Carmo, Izabela F. Alberto, Guilherme R. Franzini, Alexandre N. Simos, Hideyuki Suzuki, and Rodolfo T. Goncalves(2021), Influence of heave plates on the dynamics of a floating offshore wind turbine in waves, Journal of Marine Science and Technology volume 26, pp. 190-200.  https://doi.org/10.1007/s00773-020-00728-3
  7. Park, S., K. -H. Kim, and K. Hong(2018), Conceptual Design of Motion Reduction Device for Floating Wave-Offshore Wind Hybrid Power Generation Platform, Journal of Ocean Engineering and Technology, 32(1), pp. 9-20.  https://doi.org/10.26748/KSOE.2018.2.32.1.009
  8. Robertson, A., F. Wendt, J. Jonkman, W. Popko, H. Dagher, S. Gueydon, Jacob Qvist, F. Vittori, J. Azcona, E. Uzunoglu, C. Soares, R. Harries, A. Yde, C. Galinos, K. Hermans, J. D. Vaal, Pauline Bozonnet, Ludovic Bouy, I. Bayati, R. Bergua, J. Galvan, I. Mendikoa, Carlos Barrera Sanchez, Hyunkyoung Shin, Sho Oh, C. Molins, and Y. Debruyne(2017), OC5 Project Phase II: Validation of Global Loads of the DeepCwind Floating Semisubmersible Wind Turbine, Energy Procedia, 137, pp. 38-57.  https://doi.org/10.1016/j.egypro.2017.10.333
  9. Seo, D. W., S. J. Lee, and S. H. Lee(2013), A Study to Improve the Performance of a Fixd Type Fin Stabilizer with Coanda Effect, Journal of Korean Institute of Navigation and Port Research volume 26, pp 257-262. 
  10. Tran, T. T. and D. H. Kim(2015), The coupled dynamic response computation for a semisubmersible platform of floating offshore wind turbine. J. Wind Eng. Industrial Aerodynamics 147, pp. 104-119.  https://doi.org/10.1016/j.jweia.2015.09.016
  11. Zhang, Y.(2018), A CFD study on aerodynamic and hydrodynamic response of semi-submersible Floating Offshore Wind Turbine List of Figures ii List of Tab, 'Master's thesis, National University of Jeju.