• 제목/요약/키워드: generalized trigonometric polynomials

검색결과 3건 처리시간 0.016초

LARGE SIEVE FOR GENERALIZED TRIGONOMETRIC POLYNOMIALS

  • Joung, Hae-Won
    • 대한수학회보
    • /
    • 제36권1호
    • /
    • pp.161-169
    • /
    • 1999
  • Generalized nonnegative trigonometric polynomials are defined as the products of nonnegative trigonometric polynomials raised to positive real powers. The generalized degree can be defined in a natural way. We improve and extend the large sieve involving pth powers of trigonometric polynomials so that it holds for generalized trigonometric polynomials.

  • PDF

A STUDY OF SIMULTANEOUS APPROXIMATION BY NEURAL NETWORKS

  • Hahm, N.;Hong, B.I.
    • Journal of applied mathematics & informatics
    • /
    • 제26권1_2호
    • /
    • pp.317-324
    • /
    • 2008
  • This paper shows the degree of simultaneous neural network approximation for a target function in $C^r$[-1, 1] and its first derivative. We use the Jackson's theorem for differentiable functions to get a degree of approximation to a target function by algebraic polynomials and trigonometric polynomials. We also make use of the de La Vall$\grave{e}$e Poussin sum to get an approximation order by algebraic polynomials to the derivative of a target function. By showing that the divided difference with a generalized translation network can be arbitrarily closed to algebraic polynomials on [-1, 1], we obtain the degree of simultaneous approximation.

  • PDF

TRIGONOMETRIC JACKSON INTEGRALS APPROXIMATION BY A k-GENERALIZED MODULUS OF SMOOTHNESS

  • Hawraa Abbas, Almurieb;Zainab Abdulmunim, Sharba;Mayada Ali, Kareem
    • Nonlinear Functional Analysis and Applications
    • /
    • 제27권4호
    • /
    • pp.807-812
    • /
    • 2022
  • The need for smoothness measures emerged by mathematicians working in the fields of approximation theory, functional analysis and real analysis. In the present paper, a new version of generalized modulus of smoothness is studied. The aim of defining that modulus, is to find the degree of best Lp functions approximation via trigonometric polynomials. We benefit from Jackson integrals to arrive to the essential approximation theorems.