Bull. Korean Math. Soc. 36 (1999), No. 1, pp. 161-169

LARGE SIEVE FOR GENERALIZED
TRIGONOMETRIC POLYNOMIALS

HAEWON JOUNG

ABSTRACT. Generalized nonnegative trigonometric polynomials are
defined as the products of nonnegative trigonometric polynomials
raised to positive real powers. The generalized degree can be defined
in a natural way. We improve and extend the large sieve involving pth
powers of trigonometric polynomials so that it holds for generalized
trigonometric polynomials.

1. Introduction

The large sieve is an inequality of the following form. See [9, Theorem
3, p. 559], but note the different notation.

For any trigonometric polynomial Sy of degree at most N,

N

Sw(r) =Y ae*,  r1e(0,2m),
k=—N

M 2w
.  Sisvmr< (F o) [Cisvora,

whenever 0 <7 < T < -+ < Ty < 27 and

d=min{r — 7, -, Ty —Ty-1,27 — (Ty — 1)} > 0.
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The large sieve originates in a short paper of Ju. V. Linnik [7]. In
number theory, the large sieve plays an important role in partial solution
of Goldbach Conjecture, which asserts that every even integer greater
than 2 is the sum of two primes. Using the large sieve, Rényi [11], [12]
showed that every large even integer 2N can be expressed in the form
2N = p+ Ry , where p is prime and R has at most k prime factors.
Later Chen [1], [2] has shown that one can take k = 2.

The large sieve is useful in trigonometric interpolation and approxi-
mation. In [8, Theorem 2, p. 533], Lubinsky, M4té, and Nevai extended
(1.1) to sums involving pth powers as follows.

Let 0 < p < oo0. Let ¥ be convex, nonnegative, and nondecreasing

in [0,00). Then for any trigonometric polynomial Sy of degree at most
N eN,

M 2m
(12 S s < (F+07) [ e+ e/t

whenever 0 <1y < < -+ < 7y < 27 and
§ =min{r — 71, - , Ty — Ty-1,27 — (Tay — 1)} > 0.
REMARK. Note the differences between (12) and Theorem 2 of [8,

p. 533]. The factor (2n + 67!)(27)! in [8, Theorem 2, p. 533] should be
replaced by (% + 6‘1).

The purpose of this paper is to generalize (1.2) so that it holds for gen-
eralized trigonometric polynomials as well and to improve the inequality

(1.2) using this generalization.
. z — Zj
sin ( 5 )

with r; € R*, 2; € C, and 0 # w € C is called a generalized nonnegative
trigonometric polynomial of generalized degree

def 1
:52_:

162

The function

f2) =l []

j=1
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We denote by GTNP,, the set of all generalized nonnegative trigono-
metric polynomials of degree at most n € R*.

Note that, here, n > 0 is not necessarily an integer. In fact, we assume
throughout this paper that n € R* unless stated otherwise.

In what follows we denote by Ty, (N € N), the set of all trigonometric
polynomials of degree at most N.

In this paper we study generalized nonnegative trigonometric polyno-
mials restricted to the real line. Using

z—z; z2— 2z z2— 2z 1z
sin( 2])| = (sin( 2]>sin< 2’))

_ (cosh(lmzj) — cos(z — Rez;) ) V2
ey 2 )

z€R,

we can easily check that when f € GTNP, is restricted to the real line,
then it can be written as

m m
F=1[P", 0<PeT,reR", > <o,

Jj=1 j=1
which is the product of nonnegative trigonometric polynomials raised
to positive real powers. This explains the name generalized nonnegative
trigonometric polynomials. Many properties of generalized nonnegative
trigonometric polynomials were investigated in a series of papers (cf. [3—
6]).

The rest of this paper is organized as follows. In Section 2, we state

our results. We present the proof of theorems in Section 3.

2. Results

In this paper we denote by Dy(t) = Zsz_N e* (N € N), the Nth
Dirichlet kernel and, for each n € R, the symbol [n] denotes the integer
part of n.

Now we state our results.
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THEOREM 2.1. Let 0 < 7 < oo. Let ¥ be convex, nonnegative, and
nondecreasing in [0,00). Then for all f € GTNP,, n € R,

(2.1)
Vi
V(f(r) < 2m)'@N + 1) / Y(f(w)(r + 1)e/2) D (7 — ) du,

€ [0,2n],
where N = [z"—r + %]

The following is an analogue of (1.2) for generalized trigonometric
polynomials. Note that if f € GTNP, then f? € GTNP,,, hence, we
don’t have to keep pth powers in the following.

THEOREM 2.2. Let 0 < r < co. Let ¥ be convex, nonnegative, and
nondecreasing in [0, 00).
Let
0< << <1y <27
and
§=min{ry — 7, -, T —Tm-1,27 — (T —T1)} > 0.

Then for all f € GTNP,, n € RY,

(2.2) Z T(f(r) < (g + 5”) /0 ’ U(f(u)(r+ 1)e/2) du
where N = [Q"—T—Fl]. |

Using Theorem 2.2 we improve the inequality (1.2) as follows.

THEOREM 2.3. Let 0 < p < co. Let ¥ be convex, nonnegative, and
nondecreasing in [0,00). Then for any trigonometric polynomial Sy of
degree at most N € N,

(2. 3)
Z‘I’ Sw(m)P) < (EM )/OW\I/(|SN(U)|”(p+1)e/2)du

WheneverOSTl<Tg<---<TM§27rand

§=min{r, — 71, ,Tm — Ty-1,27 — (Tm — 1)} > 0.
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REMARK. Inequality (2.3) clearly gives better upper bounds than
(1.2) for N =2,3,4,--- .

3. Proofs

In this section we give the proof of theorems in Section 2. To prove
Theorem 2.1 we need the following lemma.

LEMMA 3.1. Let f € GINP,. Then

(1+n)e [
4 0

(3.1) f(z) £ f(6)do, ze]0,2r].

Before we prove Lemma 3.1 we state the following theorem which will
be used later. See [10, Theorem 6, p. 148].

THEOREM (Mété and Nevai). Let 0 < p < oo. Let Py be a complex
algebraic polynomial of degree at most N € N and let g be analytic in

lw| < R, (R >1). Then

(2+ Np)e

(3.2) |Pn(2)PPlg(p2)[* < .

27
| Ptenplaen an,
0
where z is an arbitrary point with |z| =1 and p = Np/(2+ Np).

Proof of Lemma 3.1. First we prove (3.1) for trigonometric polynomi-
als. Let Ty, (N € N), be a trigonometric polynomial of degree at most
N. We write

N
Tn(0) = ao+ Z(ak cos k6 + by sin k@)
k=1

N
= qp+ Z (ak
k=1

eik() —ikf

ik _ —ikd
+e b e ‘e
2 21
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in the form
N

In(0) = Z et

k=-N

N
o—iNO Z o el 8

k=-N

2N
- e—zNB Z dkesz ]
k=0
Define the algebraic polynomial Py of degree at most 2N by
PQN(Z) = d() + dlz -+ d222 + -4 dQNZZN .

Then we obtain |Pyy(e?)| = |Tw(6)| . Let 0 < p < co. Applying (3.2) to
Py with g = 1 yields

(1+pN

27
(3.3) [ Tn(2)P < )e/ [Tn(0)Pdf, =z€R,
47 0

for any Ty € Ty, (IV € N). Now we extend (3.3) to generalized trigono-
metric polynomials. Let f € GTNP,, , (n € R*). Then f can be written

as
(3.4)
m N7 m
f(a:):|w|H sin<x2z]) , w#0, z; €C, Tj€R+,er§2n.
j=1 Jj=1

First assume that r; € Q for 1 < j < m in (3.4). Then r; = ¢;/q for
some positive integers ¢; and g. Define

T(@) - tw|2q£11 (5 (252 s (252))’
sin ("” . ZJ‘)

Then T is a trigonometric polynomial of degree at most 2gn and |T'(z)|"/?9) =
f(z). Applying (3.3) to T' with 1/(2q) instead of p, we have

m

= W]

i=1

2g;
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2
f@) < S [ soas,

for all f € GTNP, with r; € Q in its representation (3.4). In the case of
positive real exponents r; in (3.4), we can obtain (3.1) using the above
inequality and approximation. O

Now we are ready to prove Theorem 2.1.
Proof of Theorem 2.1. Let f € GTNP,, (n € R*). Let 0 < r < 00
and let N = [% + %] Let
N

Dy(z)= Y e*  zelo,2n)
k=-N

Note that fD12v € GTNP, 5y . If we apply Lemma 3.1 to f(z)D%(7 —x)
with 7 fixed, we have

(35)  f(z)Di(r~2)

Since-Q’ir—%<N,wehaven<27'N+'r,sothat
1+n+2N < (r+1)(2N+1),

< (14+n+2N)e [

i A (w) D% (1 — u) du .

therefore,

(36)  f(@)Di(r—gz) < LHDEN+De

Fw)DA(T — u) du .

471' 0
Setting = 7 in (3.6), and using
Dy(0) = 2N +1,
we have
(r+1)e 2 5
< N TR - .
Since ,
DX (1 — w)du = 27(2N + 1),
0
we have

(r+De [2° f(u)D%(r — u) du
2 Dt —u)du

f(r) <
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Now suppose that ¥ is convex, nonnegative, and nondecreasing in [0, 00).

Then
(r+1)e u) D% (T — u) du
V(f(r) < ¥{ b/ il
Jy" D} (1 —u)du
1 2T
< ————— | ¥ 1)e/2) D3 (1 — v) d
< ENET ), YU 2Dy ) du
T € [0,27),
by Jensen’ inequality (Zygmund [13, p. 24]), which completes the proof
of Theorem 2.1. a

Proof of Theorem 2.2. Let 0 < 7 < co. Let ¥ be convex, nonnegative,
and nondecreasing in [0, 00).
Let

0< << - <1y <2m
and
5:min{7'2 — T,y T™ — TpM—1, 27 — (’TM —Tl)} >0.

Let f € GINP, , n € R*, and let N = [% + %] Applying (1.1) to
Dn(1 — u) we have

Z D3 (1; —u) < 2r(2N + 1) <g + 6‘1> , for u € [0, 2m),

thus, Theorem 2.2 follows by Theorem 2.1 and the above inequality. O

Proof of Theorem 2.3. Let 0 < p < co. Let ¥ be convex, nonnegative,
and nondecreasing in [0, 00).
Let
0< << <1y <27
and
d =min{ry — 7, -+, Ty — Tm-1, 27 — (tm — 1)} >0.
Let Sy be a trigonometric polynomial of degree at most N € N. Then

|Sy|P is a generalized trigonometric polynomial of degree at most Np.
Applying (2.2) to |Sy|P € GTNPy, with 7 = p yields Theorem 2.3. U
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