• Title/Summary/Keyword: generalized quasi-Banach space

Search Result 18, Processing Time 0.024 seconds

GENERALIZED VECTOR-VALUED VARIATIONAL INEQUALITIES AND FUZZY EXTENSIONS

  • Lee, Byung-Soo;Lee, Gue-Myung;Kim, Do-Sang
    • Journal of the Korean Mathematical Society
    • /
    • v.33 no.3
    • /
    • pp.609-624
    • /
    • 1996
  • Recently, Giannessi [9] firstly introduced the vector-valued variational inequalities in a real Euclidean space. Later Chen et al. [5] intensively discussed vector-valued variational inequalities and vector-valued quasi variationl inequalities in Banach spaces. They [4-8] proved some existence theorems for the solutions of vector-valued variational inequalities and vector-valued quasi-variational inequalities. Lee et al. [14] established the existence theorem for the solutions of vector-valued variational inequalities for multifunctions in reflexive Banach spaces.

  • PDF

GENERALIZED HYERS-ULAM STABILITY OF CUBIC TYPE FUNCTIONAL EQUATIONS IN NORMED SPACES

  • KIM, GWANG HUI;SHIN, HWAN-YONG
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.28 no.3
    • /
    • pp.397-408
    • /
    • 2015
  • In this paper, we solve the Hyers-Ulam stability problem for the following cubic type functional equation $$f(rx+sy)+f(rx-sy)=rs^2f(x+y)+rs^2f(x-y)+2r(r^2-s^2)f(x)$$in quasi-Banach space and non-Archimedean space, where $r={\neq}{\pm}1,0$ and s are real numbers.

STRONG CONVERGENCE OF HYBRID PROJECTION METHODS FOR QUASI-ϕ-NONEXPANSIVE MAPPINGS

  • Kang, Shin Min;Rhee, Jungsoo;Kwun, Young Chel
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.23 no.4
    • /
    • pp.801-812
    • /
    • 2010
  • In this paper, we consider the convergence of the shrinking projection method for quasi-$\phi$-nonexpansive mappings. Strong convergence theorems are established in a uniformly smooth and strictly convex Banach space which enjoys the Kadec-Klee property.

SENSITIVITY ANALYSIS FOR SYSTEM OF PARAMETRIC GENERALIZED QUASI-VARIATIONAL INCLUSIONS INVOLVING R-ACCRETIVE MAPPINGS

  • Kazmi, Kaleem Raza;Khan, Faizan Ahmad;Ahmad, Naeem
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.6
    • /
    • pp.1319-1338
    • /
    • 2009
  • In this paper, using proximal-point mappings technique of Raccretive mappings and the property of the fixed point set of set-valued contractive mappings, we study the behavior and sensitivity analysis of the solution set of the system of parametric generalized quasi-variational inclusions involving R-accretive mappings in real uniformly smooth Banach space. Further under suitable conditions, we discuss the Lipschitz continuity of the solution set with respect to parameters. The technique and results presented in this paper can be viewed as extension of the techniques and corresponding results given in [3, 23, 24, 32, 33, 34].

A PSEUDOCONVEX PROGRAMMINA IN A HILBERT SPACE

  • Yoon, Byung-Ho;Kim, In-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.23 no.2
    • /
    • pp.141-148
    • /
    • 1986
  • In [1], M. Guignard considered a constraint set in a Banach space, which is similar to that in [2] and gave a first order necessary optimality condition which generalized the Kuhn-Tucker conditions [3]. Sufficiency is proved for objective functions which is either pseudoconcave [5] or quasi-concave [6] where the constraint sets are taken pseudoconvex. In this note, we consider a psedoconvex programming problem in a Hilbert space. Constraint set in a Hillbert space being pseudoconvex and the objective function is restrained by an operator equation. Then we use the methods similar to that in [1] and [6] to obtain a necessary and sufficient optimality condition.

  • PDF

GENERALIZED SYMMETRICAL SIGMOID FUNCTION ACTIVATED NEURAL NETWORK MULTIVARIATE APPROXIMATION

  • ANASTASSIOU, GEORGE A.
    • Journal of Applied and Pure Mathematics
    • /
    • v.4 no.3_4
    • /
    • pp.185-209
    • /
    • 2022
  • Here we exhibit multivariate quantitative approximations of Banach space valued continuous multivariate functions on a box or ℝN, N ∈ ℕ, by the multivariate normalized, quasi-interpolation, Kantorovich type and quadrature type neural network operators. We treat also the case of approximation by iterated operators of the last four types. These approximations are achieved by establishing multidimensional Jackson type inequalities involving the multivariate modulus of continuity of the engaged function or its high order Fréchet derivatives. Our multivariate operators are defined by using a multidimensional density function induced by the generalized symmetrical sigmoid function. The approximations are point-wise and uniform. The related feed-forward neural network is with one hidden layer.

CONVERGENCE AND STABILITY OF ITERATIVE ALGORITHM OF SYSTEM OF GENERALIZED IMPLICIT VARIATIONAL-LIKE INCLUSION PROBLEMS USING (𝜃, 𝜑, 𝛾)-RELAXED COCOERCIVITY

  • Kim, Jong Kyu;Bhat, Mohd Iqbal;Shaf, Sumeera
    • Nonlinear Functional Analysis and Applications
    • /
    • v.26 no.4
    • /
    • pp.749-780
    • /
    • 2021
  • In this paper, we give the notion of M(., .)-𝜂-proximal mapping for a nonconvex, proper, lower semicontinuous and subdifferentiable functional on Banach space and prove its existence and Lipschitz continuity. As an application, we introduce and investigate a new system of variational-like inclusions in Banach spaces. By means of M(., .)-𝜂-proximal mapping method, we give the existence of solution for the system of variational inclusions. Further, propose an iterative algorithm for finding the approximate solution of this class of variational inclusions. Furthermore, we discuss the convergence and stability analysis of the iterative algorithm. The results presented in this paper may be further expolited to solve some more important classes of problems in this direction.

SOME INVARIANT SUBSPACES FOR BOUNDED LINEAR OPERATORS

  • Yoo, Jong-Kwang
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.24 no.1
    • /
    • pp.19-34
    • /
    • 2011
  • A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$ ${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.