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A PSEUDOCONVEX PROGRAMMING IN A HILBERT SPACE

BYUNG Ho YooN anD IN Soo Kim

1. Introduction

In [1], M. Guignard considered a constraint set in a Banach space,
which is similar to that in [2] and gave a first order necessary opti-
mality condition which generalized the Kuhn-Tucker conditions [3].
Sufficiency is proved for objective functions which is either pseudoconcave
[5] or quasi-concave [6] where the constraint sets are taken pseudoconvex.

In this note, we consider a pseudoconvex programming problem in a
Hilbert space. Constraint set in a Hilbert space being pseudoconvex and
the objective function is restrained by an operator equation. Then we
use the methods similar to that in [1] and [6] to obtain a necessary
and sufficient optimality condition.

2. Preliminaries

Let U be a real Hilbert space. For «,v in U, we use the notation
(u, v) to denote the scalar product of # and 2. Thus, for uc U, |u]|=
u, upl/2 is the norm of u. If £ is an element of U*, topological dual
of U, then the value of £ at « will be denoted by (f,u).

Let M be a subset of U. The closure of M will be denoted by M and
(M) denotes the convex hull of M: that 1s, the smallest convex set in
U containing M.

DEFINITION 2.1. A subset C of U is called a cone if, for any w<C,
aucC for all a>0.

DEFINITION 2.2. Let C be a cone in U. Subsets of U* defined by

C={feU*|(f,u) <0 for all ucC)
Ct={feU*|(f,4) >0 for all uc(}

are, respectively, called the negative and positive polar cone of C.
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Note that C~ and C* are closed convex cones in U*.

Let M be a nonempty subset of U and oM. Cones tangent and
pseudotangent to M are defined as follows:

DEFINITION 2.3. A vector v& U is said to be tangent to M at u, if
there exists a sequence {uz} in M converging to u, and a sequence {4}
of nonnegative real numbers such that the sequence {4;(uz~—u,)} converges
to v.

DEFINITION 2.4. The set 7T'(M, u,) of all the vectors tangent to M
at u, is called the cone tangent to M at u,.

DEerFINITION 2.5. The closure of the convex hull of 7(M, u,) is called
the cone pseudotangent to M at u, and is denoted by P(M, u,).

Note that T(M, u,) is a cone and P(M,u,) is a closed convex cone.
Let { M;licI} be any family of subsets of U such that NM;#¢
icfl

and let
M=0M,;, M=UM,
el

i</

For u,&M, defined cones have the following properties.

ProposITION 2.1. T(M, "")C,Q, T(M;u), P(M, ”G)C,.Q,P(Mi' u,)
Proof. 1t is clear that T(M,u,) < T(M;, u,) for all icl. Thus
T (M, 1) () T(Miy 1) (12 (M )
But the intersection of any number of closed convex cones is a closed
convex cone. Thus DIP(M,-, ug) 1s a closed convex cone containing
T(M,u,). Hence, by Definition 2.5, we have
P(M,u,) CiDIP (M;, u,).

PROPOSITION 2.2. U T(M;, u) = T (M, u,), U P(M;, u,) P (M, ,)
Proof. It is clear that 7T°(M;, u,) = T (M, u,) for all i€I. Thus
UIT<M1'5 uo) < T(Ma uo)
Moreover,
]‘(Mh uO) - T(M’ uo) CP(My u();)

for all icl. Since P(M,, u,) is the smallest closed convex cone containing
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T(M;, u,), it follows that P(M;,ug)ycP(M,u,) for all i1

DEFINITION 2.6. Let M be a subset of U and u,&M. If, for every
u&M, u—u, belongs to P(M,u,), then we say M is pseudoconvex at
u,. If M is pseudoconvex at all of its points, then we simply say that
M is pseudoconvex.

ProrosITION 2.3. If all M;, i€l, are pseudoconvexr at wu, then
M= M; is pseudoconvezx at u,.
iy

Proof. Let u be any element of M. Then ue M, for some i€ I Since
M; is pseudoconvex at u,, u—u,&P(M; u,). But then, by Proposition
2.5, u—u, belongs to P(M,u,).

REmMARK. The intersection of pseudoconvex sets need not be pseudoc-
onvex. For an example, we refer to [1].

PROPOSITION 2.4. If a subset M of U is convex, then M is pscud-
oconvex at every u, in M.

Proof. Let u€M and {4} be a sequence of numbers such that 0<4;
<1 and converges to ). For each &, let wp=u,+ A (u—u,). Then {u)
Is a sequence in M converging to u,. Let gz=1/4, for each & Then,
for every &, 14 (up—u,) =u—u, so that u —u,& T(M, u,) P (M, u,) which
proves that M is pseudoconvex at 728

REMARK. The converse of Proposition 2.4 is not true as the following
example shows.

In 1-dimensional Euclidean space E!, let @ be the set of rational
numbers and 7, be any element of Q. We will show that @ is pseudo-
convex at ro. Let r€Q and first consider the case 7>>ry. Let {rs} be a
sequence in @ such that r,>>r, and converges to r,. For each % let
Av=(r—r,)/ (re—r,). Then {4} is a sequence of positive numbers and,
clearly, A;(ri—r,) converges to r—r,. Thus r—r, = T(Q,r,). For the
cases r<'r, and r=r,, we can similarly prove that r—r, belongs to T
(@, r,). Hence @ is pseudoconvex which is not convex.

DEFINITION 2.7. Let ¢/(x) be a real function of we U. ¢ is said to
be quasi~convex if, for any real number 2, the set luc Ulg(w) <A} is
convex.

It is clear that any convex function is quasi-convex. Quasi~convex
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Fréchet differentiable functions have the following properties. F will
denote the differential operator.

ProrosITION 2. 5; If & is quasi—convex and Fréchet—differentiable at
ac€ U, then WP(@), u—u) >0 implies ¢ (u) —¢ (@) >0.
The Proof of this proposition can be found in [7].

DEFINITION 2.8. Let ¢(«) be a real function of wcU, McU and
u,&M. If ¢ is Fréchet-differentiable at u, and, for uc M, F¢(u,),u
—u,) >0 implies ¢(u) —¢ (u,) >0, then ¢ is said to be pseudoconvex
over M at u,. If ¢ is pseudoconvex over M at every u,=M, then we
say that ¢ is pseudoconvex over M. If, in particular, M is equal to the
whole space U, then we simply say that ¢ is pseudoconvex.

It can be proved as in [7] that convex Fréchet-differentiable funct-
ions are pseudoconvex and pseudoconvex functions are quasi—convex.

3. Pseudoconvex Programming

Suppose X is another real Hilbert space. For 2,y in X and g€ X%,
we use the same notations, as in section 2 (without possible confusion),
{z,») and (g, x) to denote the scalar product and the value of g at z,
respectively. We also use the notation L(X, U) to denote the set of all
bounded linear operators from X into U.

Let us now describe the problem that we wish to consider in this note.

Suppose we are given (i) a surjective linear operator Ae L(X, U), (i)
a subset V of U which is pseudoconvex and (iii) a function ¢ : U—
E' which is pseudoconvex over V. And we wish to consider the problem
of minimizing the function

(3.1) F (2, u) = llall2+ ()

over ¥V and Ax=u. This problem is a pseudoconvex programming
problem and will be called Prob. (PC).

Following well known facts which can be found in [8] are needed in
the discussion of our problem.

DEFINITION 3.1. Suppose S&L(X, U). We say S is right invertible
if there exists a bounded linear operator 7 : U -> X such that §7=1
where I is the identity map on U.
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Thus if S€L(X, U) is right invertible, then S is surjective. The
converse is also true from the following proposition.

PROPOSITION 3.1. If S€L(X, U) is surjective, then S is right inve-
rtible.

Though this proposition is well known, we give a proof for the purpose
of later use.

Proof. Let M=Ker S be the kernel of § and N be the orthogonal
complement of M. Let P:X—M and @ : X—N be the orthogonal
projections. If & X, then x=Pz+Qz and thus Sx=SPz+SQr=SQx.
Let §;=8Q. Then S, considered as a map from N into U is a bounded
linear operator. Moreover, S, : N—U is a bijection. In fact, suppose
u€ U. Since S is surjective, there exists x&X such that Sz=u. But
then Qz€ N and

S$1Qrx=8Q*x=8Qz=8Sz=u.
Thus S, : N— U is surjective. In order to show that S, is injective,
suppose Syz=0 with x&N. Then Qz=z and Sz=-SQx=0. Thus z€ M.
Since z&N, it follows that z=0.
Now let Sy=8;"1. Then S.€L(U,N) and, for any u€ U,
88.,u=88"1u=8Q8, " u=8,8;"lu==u.
This completes the proof of the proposition.

Let J: X~ X* be the duality operator from X onto its dual X*: that
is, J is an isometry from X onto X* such that (Jz, y)={z, 3> for all
z, y€X. Then the right inverse S, of § in Proposition 3.1 satisfies the
following.

PROPOSITION 3.2. Let SEL(X, U) be a surjective lincar operator.
Then SJ™IS* is invertible, where S* is the transpose of S, and the right
inverse Sy of S is given by

S =J-18*(§J-18%) -1,
Moreover,
S *JS = (8J-18%) -1,

The Proof of this proposition can be found in [8].

Let us now return to our problem Prob. (PC). Operator AeL(X, U)
given in Prob. (PC) is surjective. Thus A has the right inverse A, €L
(U, X) and, for any uc U, A,u belongs to the orthogonal complement
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of Ker A. For each uc V, let
K,={zeX|Az=u}.
Then K, is closed and convex. Moreover, if x&K,, then
AlAiu—z)=u—Az=u—u=0
so that A,u—xeKer A. Thus {A,u, Aju—x)=0 for all z€K,. This

implies that A,« is the best approximate projector of zero onto K, and
thus

14l =inflll.
TR,

Therefore, the problem of minimizing the function F(z, #) of (3.1) over
u€V and Az=u is equivalent to the problem of minimizing

(3.2) ) =G A2+ ¢ ()
over uc V.

Following lemma can be proved easily by a straightforward computation.

LEMMA 3.1. The function ¢(u) = %HA,,,uHZ of wezU s convex and

Fréchet—differentiable with the derivative
Fo(u) =A*JAu= (AJ-1A¥) 14,
Thus the objective function f(x) of (3.2) is pseudoconvex over V
and the derivative is given by
Ff(w) = (AJLA®) " ut-pd ().

THEOREM 3.1. A necessary and sufficient condition for u,&V to mini-
mize f(u) of (8.2) over V is that 7f(u,) €P*(V,u,).

Proof. Suppose u,&V minimizes f(u) over V. Let «€T(V,u,).
Then there exists a sequence {u;} in V converging to u, and a sequence
{4}, >0 for all 2, such that

lim2, (up—u,) =u.
k
Since u, minimizes f(x) over V, f(u)—f(u,) >0 for all k. Moreover,

S up) = f () = f (o), mp—u,) +o(lup—u,l).
Thus

T ), Alup—uy)) > —0Uma—l) oy,

l2es—ato|
Letting & go to infinite, we have
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(7 f (u0), ) = ollul| =0.
Therefore,
Vf(uo) < T+(V9 uO) =P+(V’ ltg).

This proves the necessity.

Conversely, let uc V. Since V is pseudoconvex at uy,, we have u—u,
&P (V,up). Thus if Ff(uy) €P*(V,uy), then (Ff(up), u—ug) >0. But
f is pseudoconvex over V at u,. IHence f(up) < f(u)and x, minimizes
f(@@) over V.

In order to illustrate how we could apply Theorem 3.1, we consider
the following example.

EXAMPLE. Suppose, in Prob. (PC), ¢ (u)=-Lllull?; that i,
(3.3) F@) =Gl A2+ L u)?
and V is convex. If #y€ V minimizes f(x) over V, then
(Agug, Au) +<u0; uy > ”A+”0H2+ ez |2
for all uc V.
Proof. Let K : U~ U* be the duality operator. Then
Vf(ug)=A*JA uy+ Ku.
Thus, by Theorem 3.1, if #, minimizes f(x) of (3.3) over V, then
A JA g+ Kuye PH(V, ).
Since V is convex, u—uy<P(V,u;) for all u€ V. Thus if #, minimizes
S(u) of (3.3), then
0< (A YT A vug, u—uy) + (Kuy, u—uy)
= (JA g, Ay (u— up)) + (Kan u— )
={ A uy, Ay (u—ﬂo)> + g, u—1o)
for all uc V.
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