A PSEUDOCONVEX PROGRAMMING IN A HILBERT SPACE

BYUNG HO YOON AND IN SOO KIM

1. Introduction

In [1], M. Guignard considered a constraint set in a Banach space, which is similar to that in [2] and gave a first order necessary optimality condition which generalized the Kuhn-Tucker conditions [3]. Sufficiency is proved for objective functions which is either pseudoconcave [5] or quasi-concave [6] where the constraint sets are taken pseudoconvex.

In this note, we consider a pseudoconvex programming problem in a Hilbert space. Constraint set in a Hilbert space being pseudoconvex and the objective function is restrained by an operator equation. Then we use the methods similar to that in [1] and [6] to obtain a necessary and sufficient optimality condition.

2. Preliminaries

Let *U* be a real Hilbert space. For u, v in *U*, we use the notation $\langle u, v \rangle$ to denote the scalar product of u and v. Thus, for $u \in U$, $||u|| = \langle u, u \rangle^{1/2}$ is the norm of u. If f is an element of U^* , topological dual of U, then the value of f at u will be denoted by (f, u).

Let M be a subset of U. The closure of M will be denoted by \overline{M} and (M) denotes the convex hull of M; that is, the smallest convex set in U containing M.

DEFINITION 2.1. A subset C of U is called a cone if, for any $u \in C$, $\alpha u \in C$ for all $\alpha \ge 0$.

DEFINITION 2.2. Let C be a cone in U. Subsets of U^* defined by

$$C^- = \{ f \in U^* | (f, u) \le 0 \text{ for all } u \in C \}$$

 $C^+ = \{ f \in U^* | (f, u) \ge 0 \text{ for all } u \in C \}$

are, respectively, called the negative and positive polar cone of C.

Received March 4, 1986.

This research was supported by MOE grant, 1985.

Note that C^- and C^+ are closed convex cones in U^* .

Let M be a nonempty subset of U and $u_0 \in M$. Cones tangent and pseudotangent to M are defined as follows:

DEFINITION 2.3. A vector $v \in U$ is said to be tangent to M at u_0 if there exists a sequence $\{u_k\}$ in M converging to u_o and a sequence $\{\lambda_k\}$ of nonnegative real numbers such that the sequence $\{\lambda_k(u_k-u_o)\}$ converges to v.

DEFINITION 2.4. The set $T(M, u_o)$ of all the vectors tangent to M at u_o is called the cone tangent to M at u_o .

DEFINITION 2.5. The closure of the convex hull of $T(M, u_o)$ is called the cone pseudotangent to M at u_o and is denoted by $P(M, u_o)$.

Note that $T(M, u_o)$ is a cone and $P(M, u_o)$ is a closed convex cone. Let $\{M_i | i \in I\}$ be any family of subsets of U such that $\bigcap_{i \in I} M_i \neq \phi$ and let

$$M = \bigcap_{i \in I} M_i$$
, $\tilde{M} = \bigcup_{i \in I} M_i$

For $u_o \in M$, defined cones have the following properties.

Proposition 2.1. $T(M, u_o) \subset \bigcap_{i \in I} T(M_i, u_i), P(M, u_o) \subset \bigcap_{i \in I} P(M_i, u_o)$

Proof. It is clear that $T(M, u_o) \subset T(M_i, u_o)$ for all $i \in I$. Thus

$$T(M, u_o) \subset \bigcap_{i \subset I} T(M_i, u_o) \subset \bigcap_{i \in I} P(M_i, u_0)$$

But the intersection of any number of closed convex cones is a closed convex cone. Thus $\bigcap_{i\in I} P(M_i, u_0)$ is a closed convex cone containing $T(M, u_0)$. Hence, by Definition 2.5, we have

$$P(M, u_{\scriptscriptstyle I}) \subset \bigcap_{i \in I} P(M_i, u_{\scriptscriptstyle 0}).$$

PROPOSITION 2.2. $\bigcup_{i\in I} T(M_i, u_0) \subset T(\tilde{M}, u_o), \bigcup_{i\in I} P(M_i, u_o) \subset P(\tilde{M}, u_o)$

Proof. It is clear that $T(M_i, u_o) \subseteq T(\tilde{M}, u_o)$ for all $i \in I$. Thus

$$\bigcup_{i\in I} T(M_i, u_o) \subset T(\tilde{M}, u_o)$$

Moreover,

$$T(M_i, u_0) \subseteq T(\tilde{M}, u_0) \subseteq P(\tilde{M}, u_0)$$

for all $i \in I$. Since $P(M_i, u_o)$ is the smallest closed convex cone containing

 $T(M_i, u_o)$, it follows that $P(M_i, u_o) \subset P(\tilde{M}, u_o)$ for all $i \in I$.

DEFINITION 2.6. Let M be a subset of U and $u_o \in M$. If, for every $u \in M$, $u-u_o$ belongs to $P(M,u_o)$, then we say M is pseudoconvex at u_o . If M is pseudoconvex at all of its points, then we simply say that M is pseudoconvex.

PROPOSITION 2.3. If all M_i , $i \in I$, are pseudoconvex at u_o , then $\widetilde{M} = \bigcup_{i \in I} M_i$ is pseudoconvex at u_o .

Proof. Let u be any element of \widetilde{M} . Then $u \in M_i$ for some $i \in I$. Since M_i is pseudoconvex at u_o , $u-u_o \in P(M_i, u_o)$. But then, by Proposition 2.5, $u-u_o$ belongs to $P(M, u_o)$.

REMARK. The intersection of pseudoconvex sets need not be pseudoconvex. For an example, we refer to [1].

PROPOSITION 2.4. If a subset M of U is convex, then M is pseudoconvex at every u_o in M.

Proof. Let $u \in M$ and $\{\lambda_k\}$ be a sequence of numbers such that $0 < \lambda_k < 1$ and converges to 0. For each k, let $u_k = u_o + \lambda_k (u - u_o)$. Then $\{u_k\}$ is a sequence in M converging to u_o . Let $\mu_k = 1/\lambda_k$ for each k. Then, for every k, $\mu_k(u_k - u_o) = u - u_o$ so that $u - u_o \in T(M, u_o) \subset P(M, u_o)$ which proves that M is pseudoconvex at u_o .

Remark. The converse of Proposition 2.4 is not true as the following example shows.

In 1-dimensional Euclidean space E^1 , let Q be the set of rational numbers and r_o be any element of Q. We will show that Q is pseudoconvex at r_o . Let $r \in Q$ and first consider the case $r > r_o$. Let $\{r_k\}$ be a sequence in Q such that $r_k > r_o$ and converges to r_o . For each k, let $\lambda_k = (r-r_o)/(r_k-r_o)$. Then $\{\lambda_k\}$ is a sequence of positive numbers and, clearly, $\lambda_k(r_k-r_o)$ converges to $r-r_o$. Thus $r-r_o \in T(Q,r_o)$. For the cases $r < r_o$ and $r = r_o$, we can similarly prove that $r-r_o$ belongs to $T(Q,r_o)$. Hence Q is pseudoconvex which is not convex.

DEFINITION 2.7. Let $\phi(u)$ be a real function of $u \in U$. ϕ is said to be quasi-convex if, for any real number λ , the set $\{u \in U | \phi(u) \le \lambda\}$ is convex.

It is clear that any convex function is quasi-convex. Quasi-convex

Fréchet differentiable functions have the following properties. Γ will denote the differential operator.

PROPOSITION 2.5. If ψ is quasi-convex and Fréchet-differentiable at $\bar{u} \in U$, then $(\nabla \psi(\bar{u}), u-\bar{u}) > 0$ implies $\psi(u) - \psi(\bar{u}) > 0$.

The Proof of this proposition can be found in [7].

DEFINITION 2.8. Let $\psi(u)$ be a real function of $u \in U$, $M \subset U$ and $u_o \in M$. If ψ is Fréchet-differentiable at u_o and, for $u \in M$, $(\nabla \psi(u_o), u - u_o) \ge 0$ implies $\psi(u) - \psi(u_o) \ge 0$, then ψ is said to be pseudoconvex over M at u_o . If ψ is pseudoconvex over M at every $u_o \in M$, then we say that ψ is pseudoconvex over M. If, in particular, M is equal to the whole space U, then we simply say that ψ is pseudoconvex.

It can be proved as in [7] that convex Fréchet-differentiable functions are pseudoconvex and pseudoconvex functions are quasi-convex.

3. Pseudoconvex Programming

Suppose X is another real Hilbert space. For x, y in X and $g \in X^*$, we use the same notations, as in section 2 (without possible confusion), $\langle x, y \rangle$ and (g, x) to denote the scalar product and the value of g at x, respectively. We also use the notation L(X, U) to denote the set of all bounded linear operators from X into U.

Let us now describe the problem that we wish to consider in this note. Suppose we are given (i) a surjective linear operator $A \in L(X, U)$, (ii) a subset V of U which is pseudoconvex and (iii) a function $\psi: U \rightarrow E^1$ which is pseudoconvex over V. And we wish to consider the problem of minimizing the function

(3.1)
$$F(x, u) = \frac{1}{2} ||x||^2 + \phi(u)$$

over $u \in V$ and Ax = u. This problem is a pseudoconvex programming problem and will be called Prob. (PC).

Following well known facts which can be found in [8] are needed in the discussion of our problem.

DEFINITION 3.1. Suppose $S \in L(X, U)$. We say S is right invertible if there exists a bounded linear operator $T: U \to X$ such that ST = I where I is the identity map on U.

Thus if $S \in L(X, U)$ is right invertible, then S is surjective. The converse is also true from the following proposition.

PROPOSITION 3.1. If $S \in L(X, U)$ is surjective, then S is right invertible.

Though this proposition is well known, we give a proof for the purpose of later use.

Proof. Let M=Ker S be the kernel of S and N be the orthogonal complement of M. Let $P: X \rightarrow M$ and $Q: X \rightarrow N$ be the orthogonal projections. If $x \in X$, then x = Px + Qx and thus Sx = SPx + SQx = SQx. Let $S_1 = SQ$. Then S_1 considered as a map from N into U is a bounded linear operator. Moreover, $S_1: N \rightarrow U$ is a bijection. In fact, suppose $u \in U$. Since S is surjective, there exists $x \in X$ such that Sx = u. But then $Qx \in N$ and

$$S_1Qx = SQ^2x = SQx = Sx = u$$
.

Thus $S_1: N \to U$ is surjective. In order to show that S_1 is injective, suppose $S_1x=0$ with $x \in N$. Then Qx=x and Sx=SQx=0. Thus $x \in M$. Since $x \in N$, it follows that x=0.

Now let
$$S_{+}=S_{1}^{-1}$$
. Then $S_{+}\in L(U,N)$ and, for any $u\in U$, $SS_{+}u=SS_{1}^{-1}u=SQS_{1}^{-1}u=S_{1}S_{1}^{-1}u=u$.

This completes the proof of the proposition.

Let $J: X \to X^*$ be the duality operator from X onto its dual X^* : that is, J is an isometry from X onto X^* such that $(Jx, y) = \langle x, y \rangle$ for all $x, y \in X$. Then the right inverse S_+ of S in Proposition 3.1 satisfies the following.

PROPOSITION 3.2. Let $S \in L(X, U)$ be a surjective linear operator. Then $SJ^{-1}S^*$ is invertible, where S^* is the transpose of S, and the right inverse S_+ of S is given by

$$S_{+}=J^{-1}S^{*}(SJ^{-1}S^{*})^{-1}$$
.

Moreover,

$$S_{+}*JS_{+}=(SJ^{-1}S*)^{-1}$$
.

The Proof of this proposition can be found in [8].

Let us now return to our problem Prob. (PC). Operator $A \in L(X, U)$ given in Prob. (PC) is surjective. Thus A has the right inverse $A_+ \in L$ (U, X) and, for any $u \in U$, A_+u belongs to the orthogonal complement

of Ker A. For each $u \in V$, let

$$K_u = \{ x \in X | Ax = u \}.$$

Then K_u is closed and convex. Moreover, if $x \in K_u$, then

$$A(A_{+}u-x)=u-Ax=u-u=0$$

so that $A_+u-x\in \operatorname{Ker} A$. Thus $\langle A_+u,A_+u-x\rangle=0$ for all $x\in K_u$. This implies that A_+u is the best approximate projector of zero onto K_u and thus

$$||A_+u||=\inf_{x\in K_u}||x||.$$

Therefore, the problem of minimizing the function F(x, u) of (3.1) over $u \in V$ and Ax = u is equivalent to the problem of minimizing

(3.2)
$$f(u) = \frac{1}{2} ||A_{+}u||^{2} + \phi(u)$$

over $u \in V$.

Following lemma can be proved easily by a straightforward computation.

Lemma 3.1. The function $\phi(u) = \frac{1}{2} ||A_+u||^2$ of $u \in U$ is convex and Fréchet-differentiable with the derivative

$$\nabla \phi(u) = A_+ * J A_+ u = (A J^{-1} A^*)^{-1} u.$$

Thus the objective function f(u) of (3.2) is pseudoconvex over V and the derivative is given by

$$\nabla f(u) = (AJ^{-1}A^*)^{-1}u + \nabla \phi(u).$$

THEOREM 3.1. A necessary and sufficient condition for $u_o \in V$ to minimize f(u) of (3.2) over V is that $\nabla f(u_o) \in P^+(V, u_o)$.

Proof. Suppose $u_o \in V$ minimizes f(u) over V. Let $u \in T(V, u_o)$. Then there exists a sequence $\{u_k\}$ in V converging to u_o and a sequence $\{\lambda_k\}$, $\lambda_k > 0$ for all k, such that

$$\lim_{\iota} \lambda_k(u_k - u_o) = u.$$

Since u_o minimizes f(u) over V, $f(u_k) - f(u_o) \ge 0$ for all k. Moreover,

$$f(u_k) - f(u_n) = (\nabla f(u_n), u_k - u_n) + o(||u_k - u_n||).$$

Thus

$$(\nabla f(u_o), \ \lambda_k(u_k-u_o)) \ge \frac{-\operatorname{o}(\|u_k-u_0\|)}{\|u_k-u_0\|} \cdot \lambda_k \|u_k-u_0\|.$$

Letting k go to infinite, we have

$$(\nabla f(u_0), u) \ge 0 ||u|| = 0.$$

Therefore,

$$\nabla f(u_0) \in T^+(V, u_0) = P^+(V, u_0).$$

This proves the necessity.

Conversely, let $u \in V$. Since V is pseudoconvex at u_0 , we have $u-u_0 \in P(V, u_0)$. Thus if $\nabla f(u_0) \in P^+(V, u_0)$, then $(\nabla f(u_0), u-u_0) \ge 0$. But f is pseudoconvex over V at u_0 . Hence $f(u_0) \le f(u)$ and u_0 minimizes f(u) over V.

In order to illustrate how we could apply Theorem 3.1, we consider the following example.

Example. Suppose, in Prob. (PC), $\phi(u) = \frac{1}{2}||u||^2$; that is,

(3.3)
$$f(u) = \frac{1}{2} ||A_{+}u||^{2} + \frac{1}{2} ||u||^{2}$$

and V is convex. If $u_0 \in V$ minimizes f(u) over V, then

$$\langle A_{+}u_{0}, A_{+}u \rangle + \langle u_{0}, u \rangle \ge ||A_{+}u_{0}||^{2} + ||u_{0}||^{2}$$

for all $u \in V$.

Proof. Let $K: U \rightarrow U^*$ be the duality operator. Then

$$\nabla f(u_0) = A_+ * J A_+ u_0 + K u_0.$$

Thus, by Theorem 3.1, if u_0 minimizes f(u) of (3.3) over V, then $A_+*JA_+u_0+Ku_0\in P^+(V,u_0)$.

Since V is convex, $u-u_0 \in P(V, u_0)$ for all $u \in V$. Thus if u_0 minimizes f(u) of (3.3), then

$$0 \le (A_+ * J A_+ u_0, u - u_0) + (K u_0, u - u_0) = (J A_+ u_0, A_+ (u - u_0)) + (K u_0, u - u_0) = \langle A_+ u_0, A_+ (u - u_0) \rangle + \langle u_0, u - u_0 \rangle$$

for all $u \in V$.

References

- 1. M. Guignard, Generalized Kuhn-Tucker Conditions for Mathematical Programming Problems in a Banach Space, SIAM J. on Control, 7(1969), 232-241.
- 2. P.P. Varaiya, Nonlinear Programming in a Banach Space, SIAM J. on

- Appl. Math., 15(1967), 284-293.
- 3. H.W. Kuhn and A.W. Tucker, *Nonlinear Programming*, Proc. Second Berkeley Symposium on Mathematical Statistics and Probability, J. Neyman, ed., University of California Press, Berkeley (1951), 481-492.
- 4. K. J. Arrow, L. Hurwicz and H. Uzawa, Constraint Qualification in Maximization Problems, Naval Res. Logist. Quart., 8(1961), 175-191.
- 5. O.L., Mangasarian, Pseudo-convex functions, SIAM J. on Control, 3(1965), 281-290.
- 6. K. J. Arrow and A. C. Enthoven, Quasi-concave Programming, Econometrica, 29(1961), 779-800.
- 7. J. Ponstein, Seven Kinds of Convexity, SIAM Review, 9(1967), 115-119.
- 8. J.P. Aubin, Applied Functional Analysis, A Wiley-Interscience Pub., John Wiley & Sons, New York, 1979.

Sogang University Seoul 121, Korea