• Title/Summary/Keyword: generalized parameters

Search Result 729, Processing Time 0.028 seconds

Robot Arm Design with Nonlinearity and Workspace Consideration (비선형 효과 및 작업 공간을 고려한 로보트 팔의 설계)

  • Lee, Sang-Jo;Yun, Yeong-Sik
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.5 no.3
    • /
    • pp.20-30
    • /
    • 1988
  • Using the design parameters of multi-joint manipulator, worspace of the manipulator were evaluated analytically, and the relation between such design parameters and nonlinearity of the manipulator were presented dynamically. The ratio of the volumes of a manipulator's workspace to the cube of its total link length presents a kinematic performance index [NVI] for the manipullator. It is possible to geometrically represent the manipulator dynamics with the generalized inertia ellipsoid (GIE). The relation between the GIE configuration and the characteristics of manipulator dynamics was analysed in terms of inertia and nonlinear forces (Coliolis and centrifugal forces). The nonlinearity caused by the change of the GIE configuration were affected by the difference between the major and minor axes length of the GIE. The results of this investigationare applied to the optimal design of the manipulator.

  • PDF

Bayesian analysis of financial volatilities addressing long-memory, conditional heteroscedasticity and skewed error distribution

  • Oh, Rosy;Shin, Dong Wan;Oh, Man-Suk
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.5
    • /
    • pp.507-518
    • /
    • 2017
  • Volatility plays a crucial role in theory and applications of asset pricing, optimal portfolio allocation, and risk management. This paper proposes a combined model of autoregressive moving average (ARFIMA), generalized autoregressive conditional heteroscedasticity (GRACH), and skewed-t error distribution to accommodate important features of volatility data; long memory, heteroscedasticity, and asymmetric error distribution. A fully Bayesian approach is proposed to estimate the parameters of the model simultaneously, which yields parameter estimates satisfying necessary constraints in the model. The approach can be easily implemented using a free and user-friendly software JAGS to generate Markov chain Monte Carlo samples from the joint posterior distribution of the parameters. The method is illustrated by using a daily volatility index from Chicago Board Options Exchange (CBOE). JAGS codes for model specification is provided in the Appendix.

Design of Waveguide Bandpass Filters Using H-plane Step Discontinuities (도파관 H 면 계단형 불연속 구조를 이용한 대이동과 여파기의 설계)

  • Nam, S.H.;Kim, K.Y.;Yun, S.W.;Ann, C.
    • Journal of the Korean Institute of Telematics and Electronics A
    • /
    • v.31A no.1
    • /
    • pp.33-38
    • /
    • 1994
  • In this paper, waveguide banpass filters using H-plane step discontinuities are designed based on the field theory analysis and optimization of the resonator lengths as well as dimensions of discontinuities, instead of the conventional synthesis method based on the equivalent circuit. The waveguide inductive obstacles introduced by H-plane step discontinuities analyzed using mode-matching method and the generalized scattering parameters are derived. Using the derived scattering parameters of the discontinuities as well as those of resonators, waveguide bandpass filters are designed through optimization method, modified Razor search method proposed by J.H.Bandler. Using this design procedures, waveguide bandpass filters are designed and tested at X-band(center frequency 10GHz) as well as Ka-band(center frequency 35GHz).

  • PDF

Dynamic behaviour of multi-stiffened plates

  • Bedair, Osama
    • Structural Engineering and Mechanics
    • /
    • v.31 no.3
    • /
    • pp.277-296
    • /
    • 2009
  • The paper investigates the dynamic behaviour of stiffened panels. The coupled differential equations for eccentric stiffening configuration are first derived. Then a semi-analytical procedure for dynamic analysis of stiffened panels is presented. Unlike finite element or finite strip methods, where the plate is discretized into a set of elements or strips, the plate in this procedure is treated as a single element. The potential energy of the structure is first expressed in terms generalized functions that describe the longitudinal and transverse displacement profiles. The resulting non-linear strain energy functions are then transformed into unconstrained optimization problem in which mathematical programming techniques are employed to determine the magnitude of the lowest natural frequency and the associated mode shape for pre-selected plate/stiffener geometric parameters. The described procedure is verified with other numerical methods for several stiffened panels. Results are then presented showing the variation of the natural frequency with plate/stiffener geometric parameters for various stiffening configurations.

Performance Analysis for an Inter-Satellite Link in the LEO Constellation with the realistic modelling (현실적 모델링 갖는 LEO Constellation에서 위성간링크의 성능분석)

  • 김영준
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.833-836
    • /
    • 1999
  • In this paper, the communication performance and its characteristics of the polar Low Earth Orbit(LEO) mobile satellite have been described in terms of the generalized performance parameters via geometric modeling and analysis. Especially, the general formula related to the parameters such as the number of orbits(M) and the number of satellites per orbit(N) were derived in the LEO satellite system for voice service, and then we applied the general result to IRIDIUM system(M=6, N=11) that would be scheduled to commercialize soon. The offered traffic of Inter Satellite Link(ISL), ISL link blocking probability as well as both new call blocking probability and the probability of forced termination for the on going call are calculated as the result of performance analysis.

  • PDF

Exact Dynamic Element Stiffness Matrices of Shear Deformable Nonsymmetric Thin-walled Beam-Columns (전단변형을 받는 비대칭 박벽 보-기둥 요소의 엄밀한 동적강도행렬)

  • Yoon Hee-Taek;Park Young-Kon;Kim Yong-Ki
    • Proceedings of the KSR Conference
    • /
    • 2005.05a
    • /
    • pp.536-543
    • /
    • 2005
  • Derivation procedures of exact dynamic stiffness matrices of thin-walled curved beams subjected to axial forces are rigorously presented for the spatial free vibration analysis. An exact dynamic stiffness matrix is established from governing equations for a uniform curved beam element with nonsymmetric thin-walled cross section. Firstly this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using element force-displacement relationships. The natural frequencies of the nonsymmetric thin-walled curved beam are evaluated and compared with analytical solutions or results by ABAQUS's shell elements in order to demonstrate the validity of this study.

  • PDF

A Dual Problem of Calibration of Design Weights Based on Multi-Auxiliary Variables

  • Al-Jararha, J.
    • Communications for Statistical Applications and Methods
    • /
    • v.22 no.2
    • /
    • pp.137-146
    • /
    • 2015
  • Singh (2013) considered the dual problem to the calibration of design weights to obtain a new generalized linear regression estimator (GREG) for the finite population total. In this work, we have made an attempt to suggest a way to use the dual calibration of the design weights in case of multi-auxiliary variables; in other words, we have made an attempt to give an answer to the concern in Remark 2 of Singh (2013) work. The same idea is also used to generalize the GREG estimator proposed by Deville and S$\ddot{a}$rndal (1992). It is not an easy task to find the optimum values of the parameters appear in our approach; therefore, few suggestions are mentioned to select values for such parameters based on a random sample. Based on real data set and under simple random sampling without replacement design, our approach is compared with other approaches mentioned in this paper and for different sample sizes. Simulation results show that all estimators have negligible relative bias, and the multivariate case of Singh (2013) estimator is more efficient than other estimators.

Stochastic upscaling via linear Bayesian updating

  • Sarfaraz, Sadiq M.;Rosic, Bojana V.;Matthies, Hermann G.;Ibrahimbegovic, Adnan
    • Coupled systems mechanics
    • /
    • v.7 no.2
    • /
    • pp.211-232
    • /
    • 2018
  • In this work we present an upscaling technique for multi-scale computations based on a stochastic model calibration technique. We consider a coarse-scale continuum material model described in the framework of generalized standard materials. The model parameters are considered uncertain, and are determined in a Bayesian framework for the given fine scale data in a form of stored energy and dissipation potential. The proposed stochastic upscaling approach is independent w.r.t. the choice of models on coarse and fine scales. Simple numerical examples are shown to demonstrate the ability of the proposed approach to calibrate coarse scale elastic and inelastic material parameters.

Exact Static Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Elastic Beams (전단변형을 고려한 비대칭 박벽보의 엄밀한 정적 요소강도행렬)

  • 김남일;곽태영;이준석;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.345-352
    • /
    • 2001
  • Derivation procedures of exact static element stiffness matrix of shear deformable thin-walled straight beams are rigorously presented for the spatial buckling analysis. An exact static element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The buckling loads are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF

Exact Dynamic Element Stiffness Matrix of Shear Deformable Nonsymmetric Thin-walled Beams Subjected to Initial Forces (초기하중을 받는 전단변형을 고려한 비대칭 박벽보의 엄밀한 동적 요소강도행렬)

  • 윤희택;김동욱;김상훈;김문영
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.435-442
    • /
    • 2001
  • Derivation procedures of exact dynamic element stiffness matrix of shear deformable nonsymmetric thin-walled straight beams are rigorously presented for the spatial free vibration analysis. An exact dynamic element stiffness matrix is established from governing equations for a uniform beam element with nonsymmetric thin-walled cross section. First this numerical technique is accomplished via a generalized linear eigenvalue problem by introducing 14 displacement parameters and a system of linear algebraic equations with complex matrices. Thus, the displacement functions of dispalcement parameters are exactly derived and finally exact stiffness matrices are determined using member force-displacement relationships. The natural frequencies are evaluated and compared with analytic solutions or results of the analysis using ABAQUS' shell elements for the thin-walled straight beam structure in order to demonstrate the validity of this study.

  • PDF