• 제목/요약/키워드: generalized parameters

검색결과 727건 처리시간 0.023초

Comparing the generalized Hoek-Brown and Mohr-Coulomb failure criteria for stress analysis on the rocks failure plane

  • Mohammadi, M.;Tavakoli, H.
    • Geomechanics and Engineering
    • /
    • 제9권1호
    • /
    • pp.115-124
    • /
    • 2015
  • Determination of mobilized shear strength parameters (that identify stresses on the failure plane) is required for analyzing the stability by limit equilibrium method. Generalized Hoek-Brown (GHB) and Mohr-Coulomb (MC) failure criteria are usually used for obtaining stresses on the plane of failure. In the present paper, the applicability of these criteria for determining the stresses on failure plane is investigated. The comparison is based on stresses on the real failure plane which are obtained from the Mohr stress circle. To do so, 18 sets of data (consist of principal stresses and angle of failure plane) presented in the literature are used. In addition, the values account for (VAF) and the root mean square error (RMSE) indices were calculated to check the determination performance of the obtained results. Values of VAF and RMSE for the normal stresses on the failure plane evaluated from MC are 49% and 31.5 where for GHB are 55% and 30.5, respectively. Also, for the shear stresses on failure plane, they are 74% and 36 for MC, 76% and 34.5 for GHB. Results show that the obtained stresses and angles of failure plane for each criterion differ from real ones, but GHB results are closer to the empirical results. Also, it is inferred that results are affected by the failure envelope not real failure plane. Therefore, obtained shear strength parameters are not mobilized. Finally, a multivariable regressed relation is presented for determining the stresses on the failure plane.

The effect of carbon nanotubes agglomeration on vibrational response of thick functionally graded sandwich plates

  • Tahouneh, Vahid
    • Steel and Composite Structures
    • /
    • 제24권6호
    • /
    • pp.711-726
    • /
    • 2017
  • In the present work, by considering the agglomeration effect of single-walled carbon nanotubes, free vibration characteristics of functionally graded (FG) nanocomposite sandwich plates resting on Pasternak foundation are presented. The volume fractions of randomly oriented agglomerated single-walled carbon nanotubes (SWCNTs) are assumed to be graded in the thickness direction. To determine the effect of CNT agglomeration on the elastic properties of CNT-reinforced composites, a two-parameter micromechanical model of agglomeration is employed. In this research work, an equivalent continuum model based on the Eshelby-Mori-Tanaka approach is employed to estimate the effective constitutive law of the elastic isotropic medium (matrix) with oriented straight CNTs. The 2-D generalized differential quadrature method (GDQM) as an efficient and accurate numerical tool is used to discretize the equations of motion and to implement the various boundary conditions. The proposed rectangular plates have two opposite edges simply supported, while all possible combinations of free, simply supported and clamped boundary conditions are applied to the other two edges. The benefit of using the considered power-law distribution is to illustrate and present useful results arising from symmetric and asymmetric profiles. The effects of two-parameter elastic foundation modulus, geometrical and material parameters together with the boundary conditions on the frequency parameters of the laminated FG nanocomposite plates are investigated. It is shown that the natural frequencies of structure are seriously affected by the influence of CNTs agglomeration. This study serves as a benchmark for assessing the validity of numerical methods or two-dimensional theories used to analysis of laminated plates.

Tests based on EDF statistics for randomly censored normal distributions when parameters are unknown

  • Kim, Namhyun
    • Communications for Statistical Applications and Methods
    • /
    • 제26권5호
    • /
    • pp.431-443
    • /
    • 2019
  • Goodness-of-fit techniques are an important topic in statistical analysis. Censored data occur frequently in survival experiments; therefore, many studies are conducted when data are censored. In this paper we mainly consider test statistics based on the empirical distribution function (EDF) to test normal distributions with unknown location and scale parameters when data are randomly censored. The most famous EDF test statistic is the Kolmogorov-Smirnov; in addition, the quadratic statistics such as the $Cram{\acute{e}}r-von$ Mises and the Anderson-Darling statistic are well known. The $Cram{\acute{e}}r-von$ Mises statistic is generalized to randomly censored cases by Koziol and Green (Biometrika, 63, 465-474, 1976). In this paper, we generalize the Anderson-Darling statistic to randomly censored data using the Kaplan-Meier estimator as it was done by Koziol and Green. A simulation study is conducted under a particular censorship model proposed by Koziol and Green. Through a simulation study, the generalized Anderson-Darling statistic shows the best power against almost all alternatives considered among the three EDF statistics we take into account.

일반화 서포트벡터 분위수회귀에 대한 연구 (Generalized Support Vector Quantile Regression)

  • 이동주;최수진
    • 산업경영시스템학회지
    • /
    • 제43권4호
    • /
    • pp.107-115
    • /
    • 2020
  • Support vector regression (SVR) is devised to solve the regression problem by utilizing the excellent predictive power of Support Vector Machine. In particular, the ⲉ-insensitive loss function, which is a loss function often used in SVR, is a function thatdoes not generate penalties if the difference between the actual value and the estimated regression curve is within ⲉ. In most studies, the ⲉ-insensitive loss function is used symmetrically, and it is of interest to determine the value of ⲉ. In SVQR (Support Vector Quantile Regression), the asymmetry of the width of ⲉ and the slope of the penalty was controlled using the parameter p. However, the slope of the penalty is fixed according to the p value that determines the asymmetry of ⲉ. In this study, a new ε-insensitive loss function with p1 and p2 parameters was proposed. A new asymmetric SVR called GSVQR (Generalized Support Vector Quantile Regression) based on the new ε-insensitive loss function can control the asymmetry of the width of ⲉ and the slope of the penalty using the parameters p1 and p2, respectively. Moreover, the figures show that the asymmetry of the width of ⲉ and the slope of the penalty is controlled. Finally, through an experiment on a function, the accuracy of the existing symmetric Soft Margin, asymmetric SVQR, and asymmetric GSVQR was examined, and the characteristics of each were shown through figures.

Management of the energy harvesting for MEMS/NEMS via newmark current method

  • Shang, Kun;Shan, Huafeng;Alkhalaf, Salem;Marzouki, Riadh;Khadimallah, Mohamed Amine
    • Advances in nano research
    • /
    • 제12권6호
    • /
    • pp.567-581
    • /
    • 2022
  • The free and forced vibration in addition to electric energy harvesting of a piezoelectric disk resting on two-parameter foundation modeled by modified couple stress as well as Kirchhoff plate theory is probed. The governing equations and boundary conditions are obtained using Hamilton's principle. Then, the free and forced vibration are solved using numerical solutions, generalized differential quadrature method (GDQM) and Newmark-beta method. The forced vibration is resulted from a base excitation load. Also, the possible voltage which can be harvested from this system is obtained using generalized integral quadrature method. The validity of the formulation and solution procedure is confirmed using a compassion study. The impact of parameters such as length effect, inner to outer radius ratio, and foundations parameters on the free and forced vibration as well as energy harvesting is investigated in detail. This paper can be a basis for future studies in the area of piezoelectric harvesters in small scales.

A generalized ANFIS controller for vibration mitigation of uncertain building structure

  • Javad Palizvan Zand;Javad Katebi;Saman Yaghmaei-Sabegh
    • Structural Engineering and Mechanics
    • /
    • 제87권3호
    • /
    • pp.231-242
    • /
    • 2023
  • A novel combinatorial type-2 adaptive neuro-fuzzy inference system (T2-ANFIS) and robust proportional integral derivative (PID) control framework for intelligent vibration mitigation of uncertain structural system is introduced. The fuzzy logic controllers (FLCs), are designed independently of the mathematical model of the system. The type-1 FLCs, have a limited ability to reduce the effect of uncertainty, due to their fuzzy sets with a crisp degree of membership. In real applications, the consequent part of the fuzzy rules is uncertain. The type-2 FLCs, are robust to the fuzzy rules and the process parameters due to the fuzzy degree of membership functions and footprint of uncertainty (FOU). The adaptivity of the proposed method is provided with the optimum tuning of the parameters using the neural network training algorithms. In our approach, the PID control force is obtained using the generalized type-2 neuro-fuzzy in such a way that the stability and robustness of the controller are guaranteed. The robust performance and stability of the presented framework are demonstrated in a numerical study for an eleven-story seismically-excited building structure combined with an active tuned mass damper (ATMD). The results indicate that the introduced type-2 neuro-fuzzy PID control scheme is effective to attenuate plant states in the presence of the structured and unstructured uncertainties, compared to the conventional, type-1 FLC, type-2 FLC, and type-1 neuro-fuzzy PID controllers.

Probabilistic analysis of gust factors and turbulence intensities of measured tropical cyclones

  • Tianyou Tao;Zao Jin;Hao Wang
    • Wind and Structures
    • /
    • 제38권4호
    • /
    • pp.309-323
    • /
    • 2024
  • The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.

Free vibration of conical shell frusta of variable thickness with fluid interaction

  • M.D. Nurul Izyan;K.K. Viswanathan;D.S. Sankar;A.K. Nor Hafizah
    • Structural Engineering and Mechanics
    • /
    • 제90권6호
    • /
    • pp.601-610
    • /
    • 2024
  • Free vibration of layered conical shell frusta of thickness filled with fluid is investigated. The shell is made up of isotropic or specially orthotropic materials. Three types of thickness variations are considered, namely linear, exponential and sinusoidal along the radial direction of the conical shell structure. The equations of motion of the conical shell frusta are formulated using Love's first approximation theory along with the fluid interaction. Velocity potential and Bernoulli's equations have been applied for the expression of the pressure of the fluid. The fluid is assumed to be incompressible, inviscid and quiescent. The governing equations are modified by applying the separable form to the displacement functions and then it is obtained a system of coupled differential equations in terms of displacement functions. The displacement functions are approximated by cubic and quintics splines along with the boundary conditions to get generalized eigenvalue problem. The generalized eigenvalue problem is solved numerically for frequency parameters and then associated eigenvectors are calculated which are spline coefficients. The vibration of the shells with the effect of fluid is analyzed for finding the frequency parameters against the cone angle, length ratio, relative layer thickness, number of layers, stacking sequence, boundary conditions, linear, exponential and sinusoidal thickness variations and then results are presented in terms of tables and graphs.

와이블 분포에서 부분가속수명시험의 최적설계 (Optimal Designs of Partially Accelerated Life Tests for Weibull Distributions)

  • 정상욱;배도선
    • 대한산업공학회지
    • /
    • 제24권3호
    • /
    • pp.367-379
    • /
    • 1998
  • This paper considers two modes of partially accelerated life tests for items having Weibull lifetime distributions. In a use-to-acclerated mode each item is first run at use condition and, if it does not fail for a specified time, then it is run at accelerated condition until a predetermined censoring time. In an accelerated-to-use mode each one is first run at accelerated condition and, if it does not fail for a specified time, then it is run at use condition. Maximum likelihood estimators of the parameters of the lifetime distribution at use condition, and the 'acceleration factor' are obtained. The stress change time for each mode is determined to minimize the asymptotic variance of the acceleration factor, and the two modes are compared. For selected values of the design parameters the optimum plans are obtained, and the effects of the incorrect pre-estimates of the design parameters are investigated. Minimizing the generalized asymptotic variance of the estimators of the model parameters is also considered as an optimality criterion.

  • PDF

Fuzzy reliability analysis of laminated composites

  • Chen, Jianqiao;Wei, Junhong;Xu, Yurong
    • Structural Engineering and Mechanics
    • /
    • 제22권6호
    • /
    • pp.665-683
    • /
    • 2006
  • The strength behaviors of Fiber Reinforced Plastics (FRP) Composites can be greatly influenced by the properties of constitutive materials, the laminate structures, and load conditions etc, accompanied by many uncertainty factors. So the reliability study on FRP is an important subject of research. Many achievements have been made in reliability studies based on the probability theory, but little has been done on the roles played by fuzzy variables. In this paper, a fuzzy reliability model for FRP laminates is established first, in which the loads are considered as random variables and the strengths as fuzzy variables. Then a numerical model is developed to assess the fuzzy reliability. The Monte Carlo simulation method is utilized to compute the reliability of laminas under the maximum stress criterion. In the second part of this paper, a generalized fuzzy reliability model (GFRM) is proposed. By virtue of the fact that there may exist a series of states between the failure state and the function state, a fuzzy assumption for the structure state together with the probabilistic assumption for strength parameters is adopted to construct the GFRM of composite materials. By defining a generalized limit state function, the problem is converted to the conventional reliability formula that enables the first-order reliability method (FORM) applicable in calculating the reliability index. Several examples are worked out to show the validity of the models and the efficiency of the methods proposed in this paper. The parameter sensitivity analysis shows that some of the mean values of the strength parameters have great influence on the laminated composites' reliability. The differences resulting from the application of different failure criteria and different fuzzy assumptions are also discussed. It is concluded that the GFRM is feasible to use, and can provide an effective and synthetic method to evaluate the reliability of a system with different types of uncertainty factors.