DOI QR코드

DOI QR Code

Probabilistic analysis of gust factors and turbulence intensities of measured tropical cyclones

  • Tianyou Tao (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University) ;
  • Zao Jin (School of Civil Engineering, Southeast University) ;
  • Hao Wang (Key Laboratory of C&PC Structures of Ministry of Education, Southeast University)
  • Received : 2023.08.15
  • Accepted : 2024.01.23
  • Published : 2024.04.25

Abstract

The gust factor and turbulence intensity are two crucial parameters that characterize the properties of turbulence. In tropical cyclones (TCs), these parameters exhibit significant variability, yet there is a lack of established formulas to account for their probabilistic characteristics with consideration of their inherent connection. On this condition, a probabilistic analysis of gust factors and turbulence intensities of TCs is conducted based on fourteen sets of wind data collected at the Sutong Cable-stayed Bridge site. Initially, the turbulence intensities and gust factors of recorded data are computed, followed by an analysis of their probability densities across different ranges categorized by mean wind speed. The Gaussian, lognormal, and generalized extreme value (GEV) distributions are employed to fit the measured probability densities, with subsequent evaluation of their effectiveness. The Gumbel distribution, which is a specific instance of the GEV distribution, has been identified as an optimal choice for probabilistic characterizations of turbulence intensity and gust factor in TCs. The corresponding empirical models are then established through curve fitting. By utilizing the Gumbel distribution as a template, the nexus between the probability density functions of turbulence intensity and gust factor is built, leading to the development of a generalized probabilistic model that statistically describe turbulence intensity and gust factor in TCs. Finally, these empirical models are validated using measured data and compared with suggestions recommended by specifications.

Keywords

Acknowledgement

The authors would like to acknowledge the financial supports from the National Natural Science Foundation of China (Grant No. 52278486, 52338011), the Young Elite Scientists Sponsorship Program by CAST (Grant No. YESS20220647), and the Zhishan Young Scholar Program of Southeast University (Grant No. 2242024RCB0007).

References

  1. Antonio, O.L.C. and Wood, D.H. (2018), Measurements of Semi-urban Gust Factors for Wind Load Determination. In: Wind Energy Exploitation in Urban Environment: TUrbWind 2017 Colloquium 1, 17-25). Springer, Cham, Switzerland.
  2. Architectural Institute of Japan (AIJ) (2015), Recommendations for loads on buildings, Structural Standards Committee, Architectural Institute of Japan, Tokyo, Japan. 
  3. ASCE (2018), Minimum Design Loads for Buildings and Other Structures (ASCE 7-16), American Society of Civil Engineers, Reston, VA, USA. 
  4. Balderrama, J.A., Masters, F.J. and Gurley, K.R. (2012), "Peak factor estimation in hurricane surface winds", J. Wind Eng. Ind. Aerodyn., 102, 1-13. https://doi.org/10.1016/j.jweia.2011.12.003. 
  5. Cao, S.Y., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I. and Matsuzaki, Y. (2015), "A case study of gust factor of a strong typhoon", J. Wind Eng. Ind. Aerod., 138, 52-60. https://doi.org/10.1016/j.jweia.2014.12.012. 
  6. Cao, S.Y., Tamura, Y., Kikuchi, N., Saito, M., Nakayama, I. and Matsuzaki, Y. (2009), "Wind characteristics of a strong typhoon", J. Wind Eng. Ind. Aerod., 97(1), 11-21. https://doi.org/10.1016/j.jweia.2008.10.002. 
  7. Chen, B., Wu, T., Yang, Y.L., Yang, Q.S., Li, Q.X. and Kareem, A. (2016), "Wind effects on a cable-suspended roof: Full-scale measurements and wind tunnel based predictions", J. Wind Eng. Ind. Aerod., 155, 159-173. https://doi.org/10.1016/j.jweia.2016.06.006. 
  8. Cheynet, E., Liu, S., Ong, M.C., Jakobsen, J.B., Snae bjornsson, J. and Gatin, I. (2020), "The influence of terrain on the mean wind flow characteristics in a fjord", J. Wind Eng. Ind. Aerod., 205, 104331. https://doi.org/10.1016/j.jweia.2020.104331. 
  9. Choi, E.C.C. (1983), "Gradient height and velocity profile during typhoons", J. Wind Eng. Ind. Aerod., 13(1-3), 31-41. https://doi.org/10.1016/0167-6105(83)90126-5. 
  10. Davenport, A.G. (1961), "A statistical approach to the treatment of wind loading on tall masts and suspension bridges", Ph.D. Dissertation, University of Bristol, Bristol. 
  11. European Committee for Standardization (CEN) (2010), Eurocode 1: Actions on Structures Part 1-4: General Actions - Wind Actions. EN 1991-1-4: 2005/AC: 2010(E), European Standard (Eurocode), European Committee for Standardization (CEN), Europe. 
  12. Fang, G.S., Zhao, L., Cao, S.Y., Ge, Y.J. and Li, K. (2019), "Gust characteristics of near-ground typhoon winds", J. Wind Eng. Ind. Aerodyn., 188, 323-337. https://doi.org/10.1016/j.jweia.2019.03.008. 
  13. Fenerci, A. and Oiseth, O. (2017), "Measured buffeting response of a long-span suspension bridge compared with numerical predictions based on design wind spectra", J. Struct. Eng., 143(9), 04017131. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001873. 
  14. Forbes, C., Evans, M., Hastings, N. and Peacock, B. (2011), Statistical Distributions, John Wiley & Sons, Hoboken, NJ, USA. 
  15. Giammanco, I.M., Schroeder, J.L. and Powell, M.D. (2012), "Observed characteristics of tropical cyclone vertical wind profiles", Wind Struct., 15(1), 65-86. https://doi.org/10.12989/was.2012.15.1.065. 
  16. Harper, B.A., Kepert, J.D. and Ginger, J.D. (2010), Guidelines for converting between various wind averaging periods in tropical cyclone conditions, World Meteorological Organization, Geneva, Switzerland.
  17. He, Y.H., Li, Q.S., Chan, P.W., Zhang, L., Yang, H.L., and Li, L. (2020), "Observational study of wind characteristics from 356-meter-high Shenzhen Meteorological Tower during a severe typhoon", Wind Struct., 30(6), 575-595. https://doi.org/10.12989/was.2020.30.6.575. 
  18. Holmes, J. (2007), Wind loading on structures, Taylor & Francis, New York, NY, USA. 
  19. Ishizaki, H. (1983), "Wind profiles, turbulence intensities and gust factors for design in typhoon-prone regions", J. Wind Eng. Ind. Aerod., 13(1-3), 55-66. https://doi.org/10.1016/0167-6105(83)90128-9. 
  20. ISO 4354 (2009), Wind Actions on Structures, International Organization for Standardization (ISO), Geneva, Switzerland.
  21. Isyumov, N. (2012), "Alan G. Davenport's mark on wind engineering", J. Wind Eng. Ind. Aerod., 104-106, 12-24. https://doi.org/10.1016/j.jweia.2012.02.007. 
  22. Jiang Y., Hui, Y., Wang, Y., Peng, L.L., Huang, G.Q. and Liu, S.Y. (2023), "A novel eigenvalue-based iterative simulation method for multi-dimensional homogeneous non-Gaussian stochastic vector fields", Struct. Saf., 100, 102290. https://doi.org/10.1016/j.strusafe.2022.102290. 
  23. Jiang, Y., Liu, S.Y., Zhao, N., Xin, J.Z. and Wu, B. (2020), "Short-term wind speed prediction using time varying filter-based empirical mode decomposition and group method of data handling-based hybrid model", Energy Conv. Manag., 220, 113076. https://doi.org/10.1016/j.enconman.2020.113076. 
  24. Jiang, Y., Zhao, N., Peng, L.L., Xin, J.Z. and Liu, S.Y. (2022), "Fast simulation of fully non-stationary wind fields using a new matrix factorization assisted interpolation method", Mech. Syst. Signal Proc., 172, 108973. https://doi.org/10.1016/j.ymssp.2022.108973. 
  25. Jing, H.M., Liao, H.L., Ma, C.M., Tao, Q.Y. and Jiang, J.S. (2020), "Field measurement study of wind characteristics at different measuring positions in a mountainous valley", Exp. Therm. Fluid Sci., 112, 109991. https://doi.org/10.1016/j.expthermflusci.2019.109991. 
  26. Kareem, A. (2020), "Emerging frontiers in wind engineering: Computing, stochastics, machine learning and beyond", J. Wind Eng. Ind. Aerod., 206, 104320. https://doi.org/10.1016/j.jweia.2020.104320. 
  27. Knaff, J.A., Sampson, C.R., Kucas, M.E., Slocum, C.J., Brennan, M.J., Meissner, T., Ricciardulli, L., Mouche, A., Reul, N., Morris, M., Chirokova, G. and Caroff, P. (2021), "Estimating tropical cyclone surface winds: Current status, emerging technologies, historical evolution, and a look to the future", Trop. Cyclone Res. Rev., 10(3), 125-150. https://doi.org/10.1016/j.tcrr.2021.09.002. 
  28. Li, L.X., Kareem, A., Xiao, Y.Q., Song, L.L. and Zhou, C.Y. (2015), "A comparative study of field measurements of the turbulence characteristics of typhoon and hurricane winds", J. Wind Eng. Ind. Aerod., 140, 49-66. https://doi.org/10.1016/j.jweia.2014.12.008. 
  29. Liao, H.L., Jing, H.M., Ma, C.M., Tao, Q.Y. and Li, Z.G. (2020), "Field measurement study on turbulence field by wind tower and Windcube Lidar in mountain valley", J. Wind Eng. Ind. Aerod., 197, 104090. https://doi.org/10.1016/j.jweia.2019.104090. 
  30. Liu, Z.H., Fang, G.S., Zhao, L. and Cao, S.Y. (2022) "A case study of gust factor characteristics for typhoon Morakat observed by distributed sites", Wind Struct., 35(1), 21-34. https://doi.org/10.12989/was.2022.35.1.021. 
  31. Lystad, T.M., Fenerci, A. and Oiseth, O. (2018), "Evaluation of mast measurements and wind tunnel terrain models to describe spatially variable wind field characteristics for long-span bridge design", J. Wind Eng. Ind. Aerod., 179, 558-573. https://doi.org/10.1016/j.jweia.2018.06.021. 
  32. Ongoma, V. and Tabari, H. (2022), Climate Impacts on Extreme Weather: Current to Future Changes on a Local to Global Scale, Elsevier Science, Amsterdam, Holland. 
  33. Professional Standard of PRC (People's Republic of China) (2018), Wind-Resistant Design Specification for Highway Bridges (JTG/T 3360-01-2018), China Communications Press, Beijing. 
  34. Schmidt, S., Kemfert, C. and Hoppe, P. (2009), "Tropical cyclone losses in the USA and the impact of climate change - A trend analysis based on data from a new approach to adjusting storm losses", Environ. Impact Assess. Rev., 29(6), 359-369. https://doi.org/10.1016/j.eiar.2009.03.003. 
  35. Shu, Z.R., Li, Q.S., He, Y.C. and Chan, P.W. (2015), "Gust factors for tropical cyclone, monsoon and thunderstorm winds", J. Wind Eng. Ind. Aerod., 142, 1-14. https://doi.org/10.1016/j.jweia.2015.02.003. 
  36. Song, J.L., Li, J.W. and Flay, R.G.J. (2020), "Field measurements and wind tunnel investigation of wind characteristics at a bridge site in a Y-shaped valley", J. Wind Eng. Ind. Aerod., 202, 104199. https://doi.org/10.1016/j.jweia.2020.104199. 
  37. Song, L.L., Li, Q.S., Chen, W.C., Qin, P., Huang, H.H. and He, Y.C. (2012), "Wind characteristics of a strong typhoon in marine surface boundary layer", Wind Struct., 15(1), 1-15. https://doi.org/10.12989/was.2012.15.1.001. 
  38. Tang, Y.N., Duan, Z.D., Yang, J. and Chen, Y. (2022), "The probabilistic turbulence profiles of tropical cyclones in open and flat terrain", J. Wind Eng. Ind. Aerod., 228, 105107. https://doi.org/10.1016/j.jweia.2022.105107. 
  39. Tao, T.Y. and Wang, H. (2023a), "Efficient buffeting analysis of long-span bridges under non-stationary winds: A 2D interpolation enhanced approach", J. Sound Vibr., 559, 117754. https://doi.org/10.1016/j.jsv.2023.117754. 
  40. Tao, T.Y., He, J.Y., Wang, H. and Zhao, K.Y. (2023b), "Efficient simulation of non-stationary non-homogeneous wind field: Fusion of multi-dimensional interpolation and NUFFT", J. Wind Eng. Ind. Aerod., 236, 105394. https://doi.org/10.1016/j.jweia.2023.105394. 
  41. Tao, T.Y., Wang, H. and Wu, T. (2017), "Comparative study of the wind characteristics of a strong wind event based on stationary and nonstationary models", J. Struct. Eng., 143(5), 04016230. https://doi.org/10.1061/(ASCE)ST.1943-541X.0001725. 
  42. Tao, T.Y., Xu, Y.L., Huang, Z.F., Zhan, S. and Wang, H. (2020), "Buffeting analysis of long-span bridges under typhoon wnds with time-varying spectra and coherences", J. Struct. Eng., 146(12), 04020255. https://doi.org/10.1061/(ASCE)ST.1943-541X.0002835. 
  43. Tyner, B., Aiyyer, A., Blaes, J. and Hawkins, D.R. (2015), "An examination of wind decay, sustained wind speed forecasts, and gust factors for recent tropical cyclones in the mid-Atlantic region of the United States", Weather Forecast., 30(1), 153-176. https://doi.org/10.1175/WAF-D-13-00125.1. 
  44. Vickery, P.J. and Skerlj, P.F. (2005), "Hurricane gust factors revisited", J. Struct. Eng., 131(5), 825-832. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:5(825). 
  45. Wang, H., Tao, T.Y., Li, A.Q. and Zhang, Y.F. (2016), "Structural health monitoring system for Sutong cable-stayed bridge", Smart. Struct. Syst., 18(2), 317-334. https://doi.org/10.12989/sss.2016.18.2.317. 
  46. Yang, Q.S., Gao, R. and Bai, F., Li, T. and Tamura, Y.K. (2018), "Damage to buildings and structures due to recent devastating wind hazards in East Asia", Nat. Hazards, 92, 1321-1353. https://doi.org/10.1007/s11069-018-3253-8. 
  47. Zhao, L., Cui, W. and Ge, Y.J. (2019). "Measurement, modeling and simulation of wind turbulence in typhoon outer region", J. Wind Eng. Ind. Aerod., 195, 104021. https://doi.org/10.1016/j.jweia.2019.104021.