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Optimal Designs of Partially Accelerated Life Tests
for Weibull Distributions*
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Abstract

This poper considers two modes of partially secelerated life tests for items having Weibull
lifetime distributions. In o use-to-acclerated mode each item is first run at use condition and,
if it does not fail for a specified time, then it is run ot accelerated condition until a predetermined
censoring fime. In an accelerated-fo-use mode each one is first run at accelerated condition
and, if it does not fail for a specified time, then it is run at use condition. Maximum likelihood
estimators of the parameters of the lifetime distribution ot use condifion, and the 'acceleration
factor’ are obtained. The siress change fime for each mode is determined fo minimize the
asymptetic variance of the acceleration factor, and the two modes are compared. For selected
volues of the design parameters the optimum plons are obtained, and the effects of the incorrect
pre-estimates of the design parameters ore investigated. Minimizing the generalized asymptofic
vorionce of the estimators of the model parameters is also considered as an optimality criterion.

1. Introeduction

When ife testing of items at the specified use condition
requires a long time to acquire the test data, accelerated
life tests (ALTs) or partially accelerated lifs tests (PALTSs)

~ are ofien used to shorten the lives of fest items. In an
ALT test items are run only at higher-than-usual levels
of stress, and in a PALT at both accelerated and use
conditions. The test data obtamed at the accelerated

conditiens are analyzed in terms of a model, and then
exirapolated to the specified design stress to estimate the
life distribution. )

Nelson [18] gives various methods of estimating the
parameters from ALT datz. When lifetimes of items
follow a Weibull or lognormal distribution, optimal
constant stress ALT plans which minimize the asymptotic
variance of maximum likelihood estimator (MLE) of 2

specified percentile at nse condition are available in the
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L terature; see Meeker and Hahn [14] and Nelsen [18],
and references therein. Nelson [17] presented a statistical
riodel for analyzing step stress test data. For items having
exponentially disiributed lifetimes, Miller and Nelson [15],
Bai et al. {6], and Bai and Chun [1] obtained optimum
step stress ALTs which minimize the asymptotic variance
of MLE of the log mean life at design stress. For items
with Weibull lifetimes Schatzoff and Lane [20] studied
tie problemn of determining siress chaﬁge time with
readout data, and Bai and Kim [4] presented siep swess
ALTs which minimize the asymptotic variance of MLE
of a specified percentile at design stress. Bai and Kim
[5] compared the step stress tests with the constant stress
tesls. )

DeGroot and Goel [10] considered a PALT in which
a test item is first run at use condition and, if it docs
rot fail for a specified fime 7, then it is run at accelerated
condition untl faifure. They suggested 2 model in which
V-TifT< r,andY=71+{T-2)fBHT)
where T is the lifetime of an item at use condition and
Y its toial lifetime. Assuming that T follows an
exponential distribution with mean life ¢ and using a
Bayesian approach, they obtained estimators of 5 and e,
and the optimal change time r* Bharttacharyya and
Soejoeti (7] proposed a failure rate model in which, if
hp(-) and hy(+) are the failore raie functions of T
end Y, respectively, then hy (y} = hp(y} if y < 7 and
hy(y) = Bhp(y) if y ) 7. This model is equivalent to
the DeGroot-Goel model. when T has an exponential
distribution.

An optimally designed PALT can have some practical
usage when one wants to know the acceleration factor in
order to carry cut the fest only at specified accelerated
condition and to extrapolate the data to estimate the
lifetime distribution at use condition. See DeGroot and
Goel [10], and Bhattacharyya and Soejoeti [7]. The
problem of optimally designing PALTs has been consi-
dered by DeGroot and Goel [10] and Bai and Chung (2]
“or items with exponentially distributed lifetimes, and by

Bai et al. [3] for items having lognormally distributed
lifetimes.

This paper considers designing twoe modes of PALTS,
the use-to-accelerated (UA) and accelerated-o-use (AU
tests. In a UA mode, each test item is first run at use
condition and, if it does oot fail for a specified time, then
it is run at accelerated condition until a predetermined
censoring time. In 2 AU mode, however, each one is first
run at accelerated condition and, if it does not fail for a
specified time, then it is run at use condition. The AU
mode can be adopted in the life tests using the alternate
stress loading, thermal cycling (MIL-STD-781D [16) and
Nelson [18]), etc. For items having Weibull lifetime
distributions, the shape and scale parameters of the
lifetime distribution at use condition, and the ‘acceleration
factor’, which is defined as the ratio of the scale parameter
of the use-condition distribution to that of the accelerated-
condition distribution, are estimated by the method of
maximum liketihood. The stress change time for each
mode is determined to minimize the asymptotic variance
of the acceleration facior, For selected combinations of
the design parameiers the optimum plans are obtained,
and the effects of using the incorrect pre-estimates of the
design parameters on the variances are investigated. The
generalized asymptotic variance of MLEs of the model
parameters is also considered as an optimality criterion.

2. The Model

Notation

n number of test items

T, T, lifetimes of an irem tested only at use and
accelerated conditions

Ul censoring time

T, chinge times from use to accelerated condi-

tion and from accelerated 1o use condition

standardized change times; X,= rfnx=1/n

lifetimes of an item tested by UA and AU

modes
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g, @ shape and scale parameters of the
Weibull distribution

8 acceleration factor (b 1)

a, 4 8 o=1{5 p=1Ina 6=-nf

$+), @(+} standard extreme value probability
density function (p.d.f) and cumula-
tive disiribution function (c.df); #z)=
20" -&’
. Plah=1-¢

() inverse function of standard extreme
value c.df; @ (p) = In{-in{1-p))
Py Pa propabilities that an item tesied only

at use and accelerated cundjl:ion;. fail
by mp, = ¢llog- u-8)/ o), p, =
@((In n- 2} o}

2.1 UA PALT

Test procedure

1. Each of n test items is first run at use condition.

2. If it does not fail at use condition by z, then it is
put on accelerated condition and run until censoring

time #.

Assumpftions

1. T, follows a Weibull distribution with parameters a
and 3, e, PriT,<t} = 1 - €Y7 = oot~
{ o).

2Y,=T,if T, < 7 and Y, =
T, 7,

3. The lifetimes of test items are statisticaily indepen-

T+ (T,- 1)/ B

dent.

Lifetime distribution

Let zy) = (ny- 1/ o, and 2(y) = {Ioly- 7,+ %)
-p- O} o, where x = T el From the shove assump-
tions the p.df. of ¥ is;

0, y<0,
iy el (o) 0 {y<st, (@
L HayD /oyt x ), 7, ¥,

Estimation of parameters and the Fisher information

matrix

The method of maximum likelihoed is used to estimate
parameters & (or #), ¢ and ¢ from the test data. The
change timg 7, is determined to minimize the asympiotic
variance of MLE of £ The lifetimes Y, -, Y, of n
test items are independemt and identically distributed
random variables, Let y,; be the observed value of the
lifetime of item 1 and Dy={y,:0<y,; < 7}, and
D, 1y 7w ¥ < 7). And let indicator function I;} be
defined as

l’ylli = DLI_]
I:} - I:()’m) - Ji= l‘z,u-,n'j:{]‘l, (22)
0.y, § Dy
The log Tikelihood for (y,,I%1%) is

'ui}
B0 0y Iill) = n o-dny e ay, e )
1 1-In o-Infy - 7+ x 2y - ez‘(y“‘ Lie 2 1?)‘ 2.3)

where I}= 1-I;- I, The total log liketifiood for
(Fyol i Yyp Tl 18 & (8,20} = Efu

MLEs 2, i and ¥ are the values of 9, p and ¢ which
are a solution to the system of equasions obtained by
letting the first partial derivatives of (8, 4,0) with
respect to 4, 4 and ¢ be zero. If we let wiy,) =
(yy- T My 7ot x,), then the system of equations is

as follows :
A 3l 6) = z[r 4o Dwly - 00wy )

+ I wl r:r)ez'( }?)]=0 (2.4)
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a[a !-u}ra ,(1] - _E{I;{-hez”(y“‘)}d‘i‘l{-1+ez'(y"*)l
+I:'lez’( E}]=0 {2.5)
Al - Zo{ ¥t
o @' ge) = T[Igl-l-zdy Jraly,Je 1+
=1

1Ly, M zidy, e )
Lz e 1o 26

The solution to the zbove system of equations can be
obtained by using a numerical method such as Newton-
Raphson method. The Fisher information matrix is
obiaingd by taking expectations of the negative second
partial derivatives of /' ( #, #, o) with Tespect to &, 2 and
o. See Appendices for details.

2.2 AU PALT

Test procedure

1. Each of n test items is first nn at accelerated
condition.

2. If it does not fail at accelerated condition by 7,

then it is put on use condition and rmn until censoring

time 7.

Assumptions

1.T, = T/B follows a Weibull distribution with
prneers of fand 3, ie, B{T, <t} = @{(Im- g 8)/ o),

2Y, =T, T, < z,and Y, = 7,+(T,-7) Bif
1,7 7,

3. The lifetimes of test items are statistically indepen-

dent.

Lifetime disiribution and estimation of parameters

From the above assumptions the pd.f of Y, is

0, y<9,
£y #a)/lay), 0y, (@n
#z() floly-r 1) 7, { v,

wee 1= 7 " zly)=(ny- 4- )/ ga(y)= {Inly- 7 x)
-p)fe. Let y,; be the observed value of the lifetime of
item 3, D=ly, [0y, < 7.} and D=y, vy, < 7).
and I‘-:i be the indicator function defined as

l,yaieDaj

E=Lly,) =

] ,i=1,2,"',l1,j=0,l.

U‘yai ¢ Daj

The log likelihood for (y,,I5I%) is

(hhal ks

B = 13- o-lny 2oy, )60
z{yy) }_I;e X0 ".?)‘
(2.8)

B o-Inly - 7,0 xezy,)e

where I3=1-I3If. MLEs 8, £ and & are the values of

®, # and ¢ which are a solution o the system of

equations obtaingd by letting the first partial derivatives
n

of F(8,4,0) = IF with respect to 8, ¢ and ¢ be zero.
i=!

2.3 Asymptotic variance of MLE of the acceleration
factor

If 2 reliable estimate of the acceleration factor can be
obtained from past andfor current data, then fests may be
conducted only at accelerated condition, and vsing the
estimate one can extrapolaie the test data into use
condition provided that the production process from which
the test items are sampled is stable for a period of time.
In such a situation precision in the estimate of the
acceleration factor would be of primary interest, and
minimizing the asymptotic variance (Asvar} of MLE 5
of # would be a natural criterion.

The asymptotic variance-covariance matrix of MLEs
&, i and ¥ is the inverse matrix of the Fisher

information matrix F, (8, o) (see Appendices). Then
Asvar( B)» & + Asvar( §), (2.9)

and minimizing Asvar( #) is equivalent to minimizing



Asvar( §). For the case without censoring Asvar( &) for
UA mode is the same as Asvar( 8} for AU mode, and
Asvar(6) = T IF(8,4,0)", where |F, (6,4 0)] is
the determinant of matrix F (6, » ) (see formula A
of Appendices for |F_(8,z, o)1}

3. Optimum Plans

Design parameters

The optimal stress change times depend on model
parameters #, uand o. A design using the pre-estimates
of the unknown model parameters is called a locally
optimal design (Chernoff [8, 91), and is commonly
adopted. Let a = @'(p) = (Inp- x- 8)/ 0, and b =
o' p)- 0 p)=-8/0c=Mg/ o

PALTSs can be designed using the pre-estimate of either
one of three sets{ 8, x4, 2), (p,p,, o), or (ab, o). It can
be easily shown that the Fisher information matrix and
asympeotic variance (2.9} for each mode can be writien
in terms of x, or x,, and either of (&, x o), (p,.p, %),

or (a,b, o}

Optimal stress change times
The opiimal stress change time x* or x. * can be

obtained numerically, for example, by the Powell [19]

method. The failure rate function A{t) of the lifetime T
of an item at use condition is equal to (e o)'(1fe” Jl_l,
and that A1) i) is constant for o = 1, ii) increases for
o {1, and iit) decreases for o) 1.

We have computed the optimal stress change times for
various combinations of (ab, 7} values, Values of a = -
5(1)25, b= .1~ 10, and ¢ = § are considered. Fig. 1
shows x * and 1 - x,* minimizing Asvar( #), where the
solid lines are for UA mode and the dashed lines for AU
mode. Fig. 2 shows the ratios of the optimal nAsvar( )’
s for UA and AU modes. Note that for most combinations
of the {a,b, o) considered the optimal nAsvar( §) of AU
mode is less than that of UA mode.

As an illustrative example we slightly medified the
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Fig. 2. Ratios of optimal nasvarl8)'s for two

modes; 7 = .8

example of Bai et al. [4] so that the use and accelerated
temperatures are 150°C and 170T, respectively, 7= 8760
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Fig. 3. ¢{#,") and ¢(4,*) without censoring as a
function of o}

hours, and o = 8 (& = 1.25). Suppose that the pre-
estimate of {a,b} is (1.5, 2), which is equivalent to {pp,)

=(45 99), (8, wW=(-16, 948 or (e AH=(13095,
4.95),. Then, Fig. | gives x * = 84 (z = 7358h) and
x* = 1 - .76 = 24 (v, = 2102h). We can see that the
ratio of variances is 1.13 from Fig. 2, which means that

the sample size of UA mode is 1.13 times larger than
that of AU mode for the same asymptotic variance. In
UA mode test items randomly chosen are first simuliane-
ously run at 150% for 7385h, and the surviving items
are then run at 170C until 8760h. In AU mode they are
first sun at 170% for 2102h, and the surviving items run
at 1707 until 8760h.

Case without censoring

Asvarl B for the case without censoring depends on
0. 1 oad T 0 v cly trogh o ad B (nry- ) 0
or$, = (Inv,- x- )/ o. Equivalently it depends on o,
and o(¢) or @(4). Fig. 3 gives ¢(9*) or @(¢,*)
as a function of . As an example suppose that the pre-
estimate of (4, p, o) is equal to {-2, 5, .8). Then, for
UA mode the optimal stress change time is 7% = 5 +
8- @0"(66) = 5+ .8 In-In(1-66)) = 5.06, and for AU

Table 1. PAVls minimizing Asvor(¥ J:{a,b, o} = 2, 2, .8)

[ b ¢ =04 ¢ =08 g =12
a-18 20 2.2 1.8 20 | 22 1.8 2.0 22
18 197 85 227 528 167 | 174 785 7.65 23.38
) 312.802 226.95 163.16 Al 50 34.02 54.71 54.71 82.68
17 02 a4 127 K] 2.82 7.28 24 2.89 13.79
) 307.79 224.12 161.66 3.21 24 &7 38.38 59.40 §7.28
13 .02 07 58 | .20 1.19 3.98 .08 50 6.12
: 302.69 221.17 160.06 2.56 A1 88 43.26 84.65 92.49
19 19 00 A7 .00 .28 1.75 1.05 .04 1.50
) 297.52 218.12 158.38 147 .03 1.16 48.71 70.49 98.31
20 A9 12 .01 25 00 48 3.00 1.07 01
: 202.29 214.99 156.57 1.44 00 1.49 54.75 76.93 104.75
5t 91 40 .06 91 28 01 5.88 332 83
' 287.04 211.78 154.70 99 03 187 61.40 83.98 111.83
| 05 1.44 82 a0 1.95 99 21 9,66 6.64 3.30
) 281.76 208.50 152.75 62 2 2.33 £8.69 91.66 119.52
93 2.06 1.36 71 333 214 98 14.33 10.97 7.08
: 276.48 205.17 150.73 33 30 2.86 76.63 %897 127.82
24 2.76 2,01 1.25 5.05 369 228 19.92 16.30 202
: 271.20 201.78 148.64 13 55 L 847 85.23 108.90 13673 |

1) UA PALT 2} AU PALT



mode the optimal stress change time is 7* = 5 + (:2)
+ 8 In(-Inf1-66)) = 3.06.

Effects of incorrect pre-estimates

An optimal design is determined by specifying the value
of {a,b, 7), which is usuvally unknown. Therefore, the value
of {a,b, 7) has 1o be pre-estimated from past experience,
data for example similar item, or a preliminary test.
Incorrect pre-estimates give a non-optimal test. We
investigate the effects of the incorrect pre-estimate of
(a,b, 0} in terms of the percentage of the asymptotic
variance increase (PAVL).

For the pre-estimate of {ab. o) = (2, 2, .8}, Table I
shows PAVIs due 1o using incorrect pre-estimate (a’,b’, o7
of (ab, o) for the test minimizing Asvar( #). Table 1
indicates that, except when comect pre-estimate of o is
used, PAVIs for UA mode seem 1o be smaller than PAVTs
for AU mode.

4, The Generalized Asymptotic Variance

When estimation of the lifetime distribution ar use
condition is of primary interest, minimization of the
generalized asymptotic variance of MLEs & & and ¥
would be a natural optimality ¢riterion. The generalized
asymptotic variance (GeAsvar) of (8, i, 8) is

GeAsvar (8, # 8 = |F (6,p0)]". {4.1)

For the case without censcring GeAsvar (8, #, 8Ys for
the two modes are the saine; see the Appendix.

For the same combinations of design parameters as Fig.
1, Fig. 4 shows x * and 1 - x* minimizing GeAsvar
(8 g ), and Fig. 5 shows the ratios of the optimal
nGeAsvar (8, 7, #)'s for UA and AU modes. Note that
for the values of a = 2.5, b = 1 ~ 10 considered the
optimal nAsvar{ §) of UA mode is less than that of AU
mode. :

For the example of {ab, o} = (1.5, 2, .8) of Section 3
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the optimal stress change times minimizing GeAsvar
B, &, dare x*= 53and x,* = 1 - .68 = 32 from
Fig. 4, and the ratio of variances is 1.11 from Fig. 5.
For the pre-estimate of (ab, o} = (2, 2, .8) of Secticn 3
the test based on GeAsvar (%, 7 6} exihibits panems
similar to the test based on Asvar( &); when incomect pre-
sstimate of o is used, PAVIs for UA mode seem to be
smaller than PAVIs for AU mode..

Effects of scale parameier, ¢

Fig. 6 and 7 show, for each optimality criterion, the
sffects of the scale parameter, ¢ on the optimal stress
shange times for selected values of (a, b). The value of
1 - x.* increases as ¢ increase for each criterion, and
the value of x* decreases for the criterion of minimizing
GeAsvar (8, 2, &)

ST T | L L L L LA
: 3
E (s‘b)’@??"_"____,,___,.,,_..-ja
A T (a B2.2 .
08 = N E
5._‘—‘—___—-—_-‘__ a b1} E
. E
E wored 3
N E
c.ai—l—l—‘—LurlrL—l*L——LufJu bf | Iuj'sl L

solid: xq:dashed:l - x;
Fig. & Effects of o on x,* & 1 - x,* minimizing
Asvar )
5. Concluding Remarks

We have considered the problem of optimally designing

BETT T T T T T T [T T T T [T 17T
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solid: x,:dashed:l - x,
Fig. 7. Effects of ¢ on x * & 1 - x,* minimizing
Gehsvar (&, 4, o))

two modes of PALTs for items with Weibull-distributed
lifetimes. Our results show that, when one can be free to
choose between the two modes of PALTs, it may be
natural, for the optimality criterion taken and the pre-
estimted values of the design parameters, to compare the
corresponding asymptotic variances and PAVIs of the
optimal use-to-accelerated and accelerated-to-use testing
modes.
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A. Appendices

A1 Fisher information matrix for UA PALT
The second partial derivatives of { * (2.3) with respect to &, # and o are :

—(91°136) - (917130 + D13+ o1 —wi(vy) +

(1—aw'(y.)e "1+ {1 —ow’(pe ™7},

— (%" 3ud6) - o 31%/36) + T TH(1—owlyy)+dl,

—d( 3%} 8088) = o(31"/36) +

an [I:‘;{O(l —wi{yy)) twlyzyule z'(y"')} + Ihwi{nz(ne zl(”)],

i=1

— (0™ [3u®) = o 3™ [0u) + B(Th+T3),

— (%1% d0os) = K110+ S Tizolvade ™+ Tiza(vude **'+ Iizy(ne ™)
and
(3% d0) - 20030 /00)+ T[Ta{1+ zhvude ™)+

1+ 2iywe ™)+ 1azd(me ™).

If we let e=(Inr, ) o, ad {=z,(7) the expeciations needed for the Fisher information matrix are obtained

a8

E(I)= [ _d(a)dz = 0(e)

BIi] - [Ca(a)z - 09 - 0(e)

ElIz]l =1- &)

: Iny—x

_ _ T, i e’ P\ - .
ElTizi(vade ™71 = (2L Ye ™ 7 - ndy = [ (Ino)'ze™dz,j= 1,2
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In(y—r,tx)—p-8

[ ] 20 ¥ui Hl _u_+_u__9]'_______,__,_,_
O e e P Rt

= fi(lnz)ize_zdz,j =12
ElIiw(y,)] = &) - 0(9) - ™ [ (27" Vze "z
E[w(ya)] = 98 - @(o) - Zvei (z " Dze ™%z + emf:(z “2Dyze "z
e e
Ellwi(ywe "] = (1+e%e ™ - (1+eMe ™ + 267 (0= [ (2 =2 "z +
(=
e—CaeL‘e —ef ) e—wesve —e'} ) ez‘”{ (zo_l)fi(z —2a—i)ze—zdz ¥ e*??ae% —et ) e—zwewe —e=}
( ef et

Ellw(vazi(vade 1= [ (nzdze ™z - €™ | (2 “Inz)ze dz.
TheFlsherinfmmtimnnu'ix,obmhmdbymldngcxpeaaﬁmofﬂmnegaﬂvcseomﬂpﬂrﬁaldﬁivaﬁmdcpaﬁsm
o, ado. @ and § can be expressed in terms of a, b x, and 0. That is ¢ = (1/o)(Ing—p) +

(1/0) In(ryfn) =a-b+ (1/0) Inx,, ad & = (1/)(Inyg—pu—6)+

(1/)(In(—z,/ 7+ (r /D)) = a + (/o) (In(l —x,+x.e ~°)) We have evaluated the integrals
involved using the atgorithm of Escobar and Meeker [11, 12] and the DGAMIC, and DQDAG routines of TMSL {13].

For the case without censoring 1% = 0, If + I3 = 1, éim@(§)=l,andtheuppexljmitofimegra]sise§—*00_

The resulting expectations depend on @ and &, or equivalenily on @( @) and 0. X we let 4| = J“(]nz)ze-xdz,

d; = fv(z T Nze Tz, dy = f,(z T2 Y26 Tz, amd.d, = f,(z ~?lnz)ze *dz, then the
determinant of the Fisher information matrix is :

FulOnd = =72+ (£ 42020t - (% +1-7")00)
+201=pd, + 201 =N —r+ore”™d, + %(l-—o)zez“"’dg - 2(1 —ne™d,

- 21=90(); - 2l -7+ (=0 & +1=pJe~ oo,
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+ A1 —pe”d(@d, - 201 —y+ore™dd, + 267d,dy + 201 —r+or)e™dyd,
z ?1_2 2 2 2 2
- at- 2{0{1—a)(1—7)+02+(1—a)z(-6—+(1—7) )]e %l + 26"

A2 Fisher information matrix for AU PALT

The second partial derivatives of /* with respect to &, 4 and 0 are

—?(8%%36%) =4 31°/36) + i:l[I?U{H (1 = o)e ™) +

E{oi — dwl(vy) + (1 —w’(ya Ye N + 11 —awHme ™),
=311 3u36) = A 21%/38) + E[13+150 —owya]
—d(9%%] 3096) = o31%/06)+ X [Tizg(vae ™"+

B —ow(ya) +w(ywzi(vae =} + Taw(nz, (pe ],

—o2( %% aph) =o(.a£afa;;)+ iZ:]l(I?{,H?I),
— (%1% o) = a1 0w+ 3 [Tize(yale ™7+
Tz y(ya)e "7 + Tizi(De "], md
—*(8%1%/ 86°) =20(31%/30) + gl[l?o{w zg(vade z"“"‘5}+
{1+ 2lvae ™)+ Tizd(me ™)

where w(y} = xa/(y_ra +xa)-

(7D
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I we lt p=(Inr,—u—8)/c and {=z,(y) the expectations needed for the Fisher information matrix are
obtained as :

E[1}] = &(o)
Ef14] = @(8) - @)

E[13] = 1 - @(0)

E[I5e*%] = 1 - (1+e%e ", Ellzh(vale "] = fﬂ (nz)ze—?dz, j = 1,2
j (¥a} e ; . . et .
E[Iizi(ya)e ™™ = fF(mz)’ze_zdz, E[Iiw'(ya)] = e”"’f,(z T e Pz, j = 1, 2
€ [
et . _ .
E[IEwi(ya)e "] =- ezm{ (ZU—I)J‘,(Z "2 ez + e e T - e 7% ¢}

y ef _
E[Iiw(yq)zi(yade mhl)1= ewf,(z "Inz)ze *dz

These expectations are functions of @, {and 6. ¢ and ¢ can be expressed in temms of a, b, X, and ¢. That is,
o =a+ (1/o) Inx,, ad & = a - b+ (1/o){In(1—x,+x,e")). For the case without censoring I3 = 0,
Ip + L = 1, Im&(Q) - 1, and the upper limit of integrals is € ‘-—~00. The resulting expectations depend on ¢
and 0, or equivalently on @( @) and . Note that the determinant of the Fisher information matrix for AU mode is the
same as that for UA mods, ie., formula (7.1) with ¢ defined as (Inz,—p—6)/o.



